Advertisement

Osteoporosis International

, Volume 26, Issue 9, pp 2329–2337 | Cite as

Favorable effect of dietary vitamin C on bone mineral density in postmenopausal women (KNHANES IV, 2009): discrepancies regarding skeletal sites, age, and vitamin D status

  • Y. A. Kim
  • K. M. Kim
  • S. Lim
  • S. H. Choi
  • J. H. Moon
  • J. H. Kim
  • S. W. Kim
  • H. C. JangEmail author
  • C. S. ShinEmail author
Original Article

Abstract

Summary

Dietary vitamin C intake showed significant positive associations with BMD in postmenopausal women, especially with vitamin D deficiency.

Introduction

Although there is a positive role of vitamin C in osteoblastogenesis, debate remains about the contribution of vitamin C to bone mineral density (BMD) in humans.

Methods

Data were derived from the Fourth Korean National Health and Nutrition Examination Survey. Dietary information was assessed using a 24-h dietary recall questionnaire. BMD was measured by dual-energy X-ray absorptiometry at the lumbar and hip.

Results

A total of 1,196 postmenopausal women aged 50 years and older were stratified into tertiles by daily dietary vitamin C intake. After adjusting for traditional confounders, dietary vitamin C intake tertile was significantly positively associated with BMD at all sites (R = 0.513 for lumbar spine (LS) and R = 0.657 for femoral neck (FN), P < 0.05 for each). The subjects with osteoporosis had significantly lower dietary vitamin C intake than did subjects without osteoporosis (74.4 ± 66.2 vs 94.1 ± 78.6 mg/day for LS and 65.5 ± 56.6 vs 94.3 ± 79.2 mg/day for FN, respectively, P < 0.001). The multiple-adjusted odds ratio for osteoporosis for dietary vitamin C <100 mg/day was 1.790 (95 % CI 1.333–2.405, P < 0.001). However, the significant association between vitamin C intake and BMD was only observed in subjects with vitamin D deficiency and aged 50–59 years or >70 years.

Conclusion

Dietary vitamin C intake was positively associated with BMD in postmenopausal women, and inadequate vitamin C intake could increase the risk of osteoporosis.

Keywords

Bone density Menopause Osteoporosis Vitamin C Vitamin D 

Notes

Acknowledgments

This study was supported by a research grant (02-2008-036) and (02-2013-051) from Seoul National University Bundang Hospital.

Conflicts of interest

None.

References

  1. 1.
    Melton LJ 3rd (2000) Who has osteoporosis? A conflict between clinical and public health perspectives. J Bone Miner Res 15(12):2309–2314. doi: 10.1359/jbmr.2000.15.12.2309 PubMedCrossRefGoogle Scholar
  2. 2.
    Dawson-Hughes B, Harris SS, Krall EA, Dallal GE (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337(10):670–676PubMedCrossRefGoogle Scholar
  3. 3.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767. doi: 10.1016/S0140-6736(02)08657-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409PubMedCrossRefGoogle Scholar
  5. 5.
    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31(3):266–300. doi: 10.1210/er.2009-0024 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85(3):632–639. doi: 10.1172/JCI114485 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15(10):468–477. doi: 10.1016/j.molmed.2009.08.004 PubMedCrossRefGoogle Scholar
  8. 8.
    Nishikimi M (1975) Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun 63(2):463–468PubMedCrossRefGoogle Scholar
  9. 9.
    Deutsch JC (1998) Ascorbic acid oxidation by hydrogen peroxide. Anal Biochem 255(1):1–7. doi: 10.1006/abio.1997.2293 PubMedCrossRefGoogle Scholar
  10. 10.
    Morikawa D, Nojiri H, Saita Y, Kobayashi K, Watanabe K, Ozawa Y, Koike M, Asou Y, Takaku T, Kaneko K, Shimizu T (2013) Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading. J Bone Miner Res 28(11):2368–2380. doi: 10.1002/jbmr.1981 PubMedCrossRefGoogle Scholar
  11. 11.
    Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, Saito M, Marumo K, Yonezawa I, Kaneko K, Shirasawa T, Shimizu T (2011) Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res 26(11):2682–2694. doi: 10.1002/jbmr.489 PubMedCrossRefGoogle Scholar
  12. 12.
    Sanbe T, Tomofuji T, Ekuni D, Azuma T, Tamaki N, Yamamoto T (2007) Oral administration of vitamin C prevents alveolar bone resorption induced by high dietary cholesterol in rats. J Periodontol 78(11):2165–2170. doi: 10.1902/jop.2007.070181 PubMedCrossRefGoogle Scholar
  13. 13.
    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88(4):1523–1527PubMedCrossRefGoogle Scholar
  14. 14.
    Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Ando F, Shimokata H, Yano M (2011) Dietary patterns of antioxidant vitamin and carotenoid intake associated with bone mineral density: findings from post-menopausal Japanese female subjects. Osteoporos Int 22(1):143–152. doi: 10.1007/s00198-010-1239-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Chuin A, Labonte M, Tessier D, Khalil A, Bobeuf F, Doyon CY, Rieth N, Dionne IJ (2009) Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporos Int 20(7):1253–1258. doi: 10.1007/s00198-008-0798-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Peterkofsky B, Gosiewska A, Kipp DE, Shah V, Wilson S (1994) Circulating insulin-like growth factor binding proteins (IGFBPs) 1 and 2 induced in vitamin C-deficient or fasted guinea pigs inhibit IGF-I action in cultured cells. Growth Factors 10(4):229–241PubMedCrossRefGoogle Scholar
  17. 17.
    Bonucci E (2012) Bone mineralization. Front Biosci (Landmark Ed) 17:100–128CrossRefGoogle Scholar
  18. 18.
    Takamizawa S, Maehata Y, Imai K, Senoo H, Sato S, Hata R-I (2004) Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol Int 28(4):255–265PubMedCrossRefGoogle Scholar
  19. 19.
    Franceschi RT, Iyer BS, Cui Y (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3‐E1 cells. J Bone Miner Res 9(6):843–854PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu LL, Cao J, Sun M, Yuen T, Zhou R, Li J, Peng Y, Moonga SS, Guo L, Mechanick JI, Iqbal J, Peng L, Blair HC, Bian Z, Zaidi M (2012) Vitamin C prevents hypogonadal bone loss. PLoS One 7(10), e47058. doi: 10.1371/journal.pone.0047058 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Park JK, Lee EM, Kim AY, Lee EJ, Min CW, Kang KK, Lee MM, Jeong KS (2012) Vitamin C deficiency accelerates bone loss inducing an increase in PPAR-gamma expression in SMP30 knockout mice. Int J Exp Pathol 93(5):332–340. doi: 10.1111/j.1365-2613.2012.00820.x PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Yano K, Heilbrun L, Wasnich R, Hankin J, Vogel J (1985) The relationship between diet and bone mineral content of multiple skeletal sites in elderly Japanese-American men and women living in Hawaii. Am J Clin Nutr 42(5):877–888PubMedGoogle Scholar
  23. 23.
    Leveille SG, LaCroix AZ, Koepsell TD, Beresford SA, Van Belle G, Buchner DM (1997) Dietary vitamin C and bone mineral density in postmenopausal women in Washington State, USA. J Epidemiol Community Health 51(5):479–485PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hall SL, Greendale GA (1998) The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. Calcif Tissue Int 63(3):183–189PubMedCrossRefGoogle Scholar
  25. 25.
    Kaptoge S, Welch A, McTaggart A, Mulligan A, Dalzell N, Day NE, Bingham S, Khaw KT, Reeve J (2003) Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int 14(5):418–428. doi: 10.1007/s00198-003-1391-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Ilich JZ, Brownbill RA, Tamborini L (2003) Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density. Eur J Clin Nutr 57(4):554–565. doi: 10.1038/sj.ejcn.1601577 PubMedCrossRefGoogle Scholar
  27. 27.
    Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2009) Protective effect of total and supplemental vitamin C intake on the risk of hip fracture–a 17-year follow-up from the Framingham Osteoporosis Study. Osteoporos Int 20(11):1853–1861. doi: 10.1007/s00198-009-0897-y PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS, Lewis CE, Nevitt MC, Simon JA, Stone KL, Wactawski-Wende J (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82(3):581–588PubMedGoogle Scholar
  29. 29.
    Morton DJ, Barrett-Connor EL, Schneider DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 16(1):135–140. doi: 10.1359/jbmr.2001.16.1.135 PubMedCrossRefGoogle Scholar
  30. 30.
    Nieves JW, Komar L, Cosman F, Lindsay R (1998) Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 67(1):18–24PubMedGoogle Scholar
  31. 31.
    Simon JA, Hudes ES (2001) Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. Am J Epidemiol 154(5):427–433PubMedCrossRefGoogle Scholar
  32. 32.
    Melhus H, Michaelsson K, Holmberg L, Wolk A, Ljunghall S (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14(1):129–135. doi: 10.1359/jbmr.1999.14.1.129 PubMedCrossRefGoogle Scholar
  33. 33.
    Lee ES, Forthofer RN (2006) Analyzing complex survey data, 2nd edn. Sage, Thousand OaksGoogle Scholar
  34. 34.
    The Korean Nutrition Society (2010) Dietary reference intakes for Koreans. First revision. Kookjin, SeoulGoogle Scholar
  35. 35.
    Takamizawa S, Maehata Y, Imai K, Senoo H, Sato S, Hata R (2004) Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol Int 28(4):255–265. doi: 10.1016/j.cellbi.2004.01.010 PubMedCrossRefGoogle Scholar
  36. 36.
    New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71(1):142–151PubMedGoogle Scholar
  37. 37.
    Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, Kiel DP (2002) Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 76(1):245–252PubMedGoogle Scholar
  38. 38.
    Prynne CJ, Mishra GD, O’Connell MA, Muniz G, Laskey MA, Yan L, Prentice A, Ginty F (2006) Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr 83(6):1420–1428PubMedGoogle Scholar
  39. 39.
    Baeuerle PA, Rupec RA, Pahl HL (1996) Reactive oxygen intermediates as second messengers of a general pathogen response. Pathol Biol (Paris) 44(1):29–35Google Scholar
  40. 40.
    Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3(11):1285–1289PubMedCrossRefGoogle Scholar
  41. 41.
    Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22(4):477–501. doi: 10.1210/edrv.22.4.0437 PubMedCrossRefGoogle Scholar
  42. 42.
    Hie M, Tsukamoto I (2011) Vitamin C-deficiency stimulates osteoclastogenesis with an increase in RANK expression. J Nutr Biochem 22(2):164–171. doi: 10.1016/j.jnutbio.2010.01.002 PubMedCrossRefGoogle Scholar
  43. 43.
    Richter A, Kuhlmann MK, Seibert E, Kotanko P, Levin NW, Handelman GJ (2008) Vitamin C deficiency and secondary hyperparathyroidism in chronic haemodialysis patients. Nephrol Dial Transplant 23(6):2058–2063. doi: 10.1093/ndt/gfn084 PubMedCrossRefGoogle Scholar
  44. 44.
    Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13(2):105–112PubMedCrossRefGoogle Scholar
  45. 45.
    Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23(2):205–214. doi: 10.1359/jbmr.071020 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Bischoff-Ferrari HA, Kiel DP, Dawson-Hughes B, Orav JE, Li R, Spiegelman D, Dietrich T, Willett WC (2009) Dietary calcium and serum 25-hydroxyvitamin D status in relation to BMD among U.S. adults. J Bone Miner Res 24(5):935–942. doi: 10.1359/jbmr.081242 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Steingrimsdottir L, Gunnarsson O, Indridason OS, Franzson L, Sigurdsson G (2005) Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 294(18):2336–2341. doi: 10.1001/jama.294.18.2336 PubMedCrossRefGoogle Scholar
  48. 48.
    Joo NS, Dawson-Hughes B, Kim YS, Oh K, Yeum KJ (2013) Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the fourth and fifth Korea National Health and Nutrition Examination Survey (KNHANES IV-3, 2009 and KNHANES V-1, 2010). J Bone Miner Res 28(4):764–770. doi: 10.1002/jbmr.1790 PubMedCrossRefGoogle Scholar
  49. 49.
    Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, Kim KJ, Rhee Y, Lim SK (2011) Vitamin D insufficiency in Korea–a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab 96(3):643–651. doi: 10.1210/jc.2010-2133 PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • Y. A. Kim
    • 1
    • 4
  • K. M. Kim
    • 2
    • 4
  • S. Lim
    • 2
    • 4
  • S. H. Choi
    • 2
    • 4
  • J. H. Moon
    • 2
    • 4
  • J. H. Kim
    • 1
    • 4
  • S. W. Kim
    • 3
    • 4
  • H. C. Jang
    • 2
    • 4
    Email author
  • C. S. Shin
    • 1
    • 4
    Email author
  1. 1.Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
  2. 2.Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
  3. 3.Department of Internal MedicineSeoul National University Boramae HospitalSeoulSouth Korea
  4. 4.Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations