Advertisement

Rechtsmedizin

, Volume 27, Issue 2, pp 79–86 | Cite as

Kardiale Aspekte von Elektroschockdistanzwaffen

  • S. N. Kunz
  • J. Adamec
Übersichten

Zusammenfassung

Elektroschockdistanzwaffen, wie beispielsweise der Taser, werden bereits seit mehreren Jahren von Sondereinsatzkommandos der Polizei in Deutschland, Österreich und der Schweiz angewandt. Aufgrund aktueller politischer Veränderungen und der hiermit einhergehenden immer komplexer werdenden Anforderungen an Polizisten im Streifendienst wird derzeit eine flächendeckende Einführung der Tasergeräte diskutiert. In diesem Zusammenhang spielt die medizinische Risikobeurteilung dieser Technologie eine wichtige Rolle. Obwohl es seit Jahren mehrere Hundert Publikationen zu den pathophysiologischen Risiken von Elektroschockdistanzwaffen gibt, zeigt der Literaturvergleich medizinischer Veröffentlichungen zu diesem Thema ein teilweise uneinheitliches Bild, insbesondere bei der Fragestellung einer potenziellen Beeinflussung des Herzens.

Die vorliegende Arbeit setzt sich mit den kardialen Aspekten von Elektroschockdistanzwaffen auseinander. Mithilfe der medizinischen Datenbank PubMed wurden zu diesem Thema publizierte Fachartikel kritisch analysiert und miteinander verglichen.

Nach aktuellem wissenschaftlichen Informationsstand kann davon ausgegangen werden, dass bei fachgerechter Anwendung von Elektroschockdistanzwaffen keine klinisch relevanten pathophysiologischen Auswirkungen auf das Herz einer getroffenen, gesunden Person zu erwarten sind. Ein dem Grundsatz der Zweck- und Verhältnismäßigkeit folgender Einsatz von CEW ist daher als unbedenklich einzustufen.

Schlüsselwörter

Rechtsmedizin Elektroschockdistanzwaffen Taser Strominduziertes Herzkammerflimmern Strom 

Cardiac aspects of conducted electrical weapons (CEW)

Abstract

Conducted electrical weapons (CEWs), such as Taser devices, have been used by special police forces in Germany, Austria and Switzerland for several years. Due to current political changes and the increasing complexity of requirements for police officers in the field, a large-scale introduction of Taser devices is currently being discussed. In this context, the medical risk assessment of this new technology plays an important role. Although there have been several hundred articles on the pathophysiological risks of CEWs published over the last years, the literature comparison of medical publications on this subject reveals a partially inconsistent picture.

The present work deals with the cardiac aspects of CEWs. Using the medical database PubMed, articles published on this topic are critically evaluated and compared.

According to up-to-date scientific information, it can be assumed that with the proper application of CEWs, no clinically significant pathophysiological effects on the heart are to be expected. Using CEWs following the requirements of necessity and proportionality should therefore be classified as safe.

Keywords

Forensic medicine Conducted electrical weapon Taser Ventricular fibrillation Electricity 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. N. Kunz und J. Adamec geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Allison JS, Qin H, Dosdall DJ, Huang J, Newton JC, Allred JD, Smith WM, Ideker RE (2007) The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol 18:1306–1312CrossRefPubMedGoogle Scholar
  2. 2.
    Amnesty International USA, Trimel S (2012) Amnesty International urges stricter limits on police taser use as U.S. Death toll reaches 500. Press release 2012. http://www.amnestyusa.org/news/press-releases/amnesty-international-urges-stricter-limits-on-police-taser-use-as-us-death-toll-reaches-500. Zugegriffen: 13. Okt 2016Google Scholar
  3. 3.
    Anders S, Tsokos M, Püschel K (2002) Nachweis der Stromwirkung und des Stromweges im Körper. Rechtsmedizin 12:1–9CrossRefGoogle Scholar
  4. 4.
    Baldwin DE, Nagarakanti R, Hardy SP, Jain N, Borne DM, England AR, Nix ED, Daniels CL, Abide WP Jr, Glancy DI (2010) Myocardial infarction after taser exposure. J La State Med Soc 162:291–295PubMedGoogle Scholar
  5. 5.
    Brave MA, Lakkireddy DR, Kroll MW, Panescu D (2016) Validity of the Small Swine Model for Human Electrical Safety Risks. Conf Proc IEEE Eng Med Biol Soc 38: 2343–2348Google Scholar
  6. 6.
    Buchanan K, Muir RLM, Stokes K, Barone K (2015) Electronic defense weapon analysis and findings. State of Connecticut. Institute for Municipal & Regional Policy. Central Connecticut State University. http://www.ccsu.edu/imrp/projects/files/EDW.pdf. Zugegriffen: 13. Okt 16Google Scholar
  7. 7.
    Bux R, Andresen D, Rothschild MA (2002) Elektrowaffe ADVANCED TASER M 26. Funktionsweise, Wirksamkeit und Kasuistik. Rechtsmedizin 12:207–213CrossRefGoogle Scholar
  8. 8.
    Criscione JC, Kroll MW (2014) Incapacitation recovery times from a conductive electrical weapon exposure. Forensic Sci Med Pathol 10:203–207CrossRefPubMedGoogle Scholar
  9. 9.
    Dawes DM, Ho J, Miner J (2009) The neuroendocrine effects of the TASER X26: a brief report. Forensic Sci Int 183:14–19CrossRefPubMedGoogle Scholar
  10. 10.
    Dawes DM, Ho J, Moore JC, Laudenbach AP, Reardon RF, Miner JR (2014) An evaluation of two conducted electrical weapons using a swine comparative cardiac safety model. Forensic Sci Med Pathol 10:329–335CrossRefPubMedGoogle Scholar
  11. 11.
    Dawes DM, Ho JD (2011) Re: myocardial infarction after TASER exposure. J La Sate Med Soc 162:291–295Google Scholar
  12. 12.
    Dawes DM, Ho JD, Moore JC, Miner JR (2013) Erratum to: an evaluation of two conducted electrical weapons and two probe designs using a swine comparative cardiac safety model. Forensic Sci Med Pathol 9:343CrossRefGoogle Scholar
  13. 13.
    Dawes DM, Ho JD, Reardon RF, Miner JR (2010) Echocardiographic evaluation of TASER X26 probe deployment into the chest of human volunteers. Am J Emerg Med 28:49–55CrossRefPubMedGoogle Scholar
  14. 14.
    Dawes DM, Ho JD, Reardon RF, Miner JR (2010) The cardiovascular, respiratory, and metabolic effects of a long duration electronic control device exposure in human volunteers. Forensic Sci Med Pathol 6:268–274CrossRefPubMedGoogle Scholar
  15. 15.
    Dawes DM, Ho JD, Reardon RF, Strote SR, Nelson RS, Lundin EJ, Orozco BS, Kunz SN, Miner JR (2011) The respiratory, metabolic, and neuroendocrine effects of a new generation electronic control device. Forensic Sci Int 207:55–60CrossRefPubMedGoogle Scholar
  16. 16.
    Dawes DM, Ho JD, Sweeney JD, Lundin EJ, Kunz SN, Miner JR (2011) The effect of an electronic control device on muscle injury as determined by creatine kinase enzyme. Forensic Sci Med Pathol 7:3–8CrossRefPubMedGoogle Scholar
  17. 17.
    Dawes DM, Ho JD, Vincent AS, Nystrom PC, Moore JC, Steinberg LW, Tilton AM, Brave MA, Berris MS, Miner JR (2014) The neurocognitive effects of simulated use-of-force scenarios. Forensic Sci Med Pathol 10:9–17CrossRefPubMedGoogle Scholar
  18. 18.
    Dennis A, Valentino D, Walter R, Nagy K, Winners J, Bokhari F, Wiley D, Joseph K, Roberts R (2007) Acute effects of TASER X26 discharges in a swine model. J Trauma 63:581–590CrossRefPubMedGoogle Scholar
  19. 19.
    Dudenhausen I (2016) Bekämpfung des Islamistischen Terrorismus. Kriminalistik 5:310–317Google Scholar
  20. 20.
    Eastman AL, Metzger JC, Pepe PE, Benitez FL, Decker J, Rinnert KJ, Field CA, Friese RS (2008) Conducted electrical devices: a prospective, population-based study of the medical safety of law enforcement use. J Trauma 64:1567–1572CrossRefPubMedGoogle Scholar
  21. 21.
    Fieseler S, Zinka B, Peschel O, Kunz SN (2011) Elektrowaffe Taser® - Funktion, Wirkung, kritische Aspekte. Rechtsmedizin 21:535–540CrossRefGoogle Scholar
  22. 22.
    Genfer Abkommen (1949) Genfer Abkommen über den Schutz von Zivilpersonen in Kriegszeiten. http://www.admin.ch/ch/d/sr/i5/0.518.51.de.pdf. Zugegriffen: 13. Jul 2013Google Scholar
  23. 23.
    Haegli LM, Sterns LD, Adam DC, Leather RA (2006) Effect of a Taser shot to the chest of a patient with an implantable defibrillator. Heart Rhythm 3:339–341CrossRefGoogle Scholar
  24. 24.
    Hamlin RL, Burton RR, Leverett SD, Burns JW (1975) Ventricular activation process in minipigs. J Electrocardiol 8:113–116CrossRefPubMedGoogle Scholar
  25. 25.
    Ho HJ, Dawes DM, Reardon RF, Lapine AL, Dolan BJ, Lundin EJ, Miner JR (2008) Echocardiographic evaluation of a TASER-X-26 application in the ideal human cardiac axis. Acad Emerg Med 15:838–844CrossRefPubMedGoogle Scholar
  26. 26.
    Ho J, Dawes D, Miner J, Kunz SN, Nelson R, Williamson C, Sweeney J (2012) Conducted electrical weapon incapacitation during a goal-directed task as a function of probe spread. Forensic Sci Med Pathol 8:358–366CrossRefPubMedGoogle Scholar
  27. 27.
    Ho JD, Dawes DM, Chang RJ, Nelson RS, Miner JR (2014) Physiologic effects of a new-generation conducted electrical weapon on human volunteers. J Emerg Med 46:428–435CrossRefPubMedGoogle Scholar
  28. 28.
    Ho JD, Dawes DM, Heegaard WG, Miner JR (2009) Human research review of the TASER electronic control device. Conf Proc IEEE Eng Med Biol Soc 2009:3181–3183. doi: 10.1109/iembs.2009.5334540 PubMedGoogle Scholar
  29. 29.
    Ho JD, Dawes DM, Reardon RF, Strote SR, Kunz SN, Nelson RS, Lundin EJ, Orozco BS, Miner JR (2011) Human cardiovascular effects of a new generation conducted electrical weapon. Forensic Sci Int 204:50–57CrossRefPubMedGoogle Scholar
  30. 30.
    Hoffa M, Ludwig C (1850) Einige neue Versuche über Herzbewegungen. Z Ration Med 9:107–144Google Scholar
  31. 31.
    Howe BB, Fehn PA, Pensinger RR (1968) Comparative anatomical studies of the coronary arteries of canine and porcine hearts. I. Free ventricular walls. Acta Anat 71:13–21CrossRefPubMedGoogle Scholar
  32. 32.
    Ideker RE, Dosdall DJ (2007) Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults? Am J Forensic Med Pathol 28:195–201CrossRefPubMedGoogle Scholar
  33. 33.
    International Electrotechnical Commission (2005) Effects of current on human beings and livestock: part 1 – general aspects. IEC 60479-1. IEC, GenevaGoogle Scholar
  34. 34.
    International Electrotechnical Commission (2006) Household and similar electrical appliances – safety – part 2 – 76: particular requirements for electric fence energizers. IEC 60335-2-76. Ed 2.1. IEC, GenevaGoogle Scholar
  35. 35.
    International Electrotechnical Commission (2007) Effects of current on human beings and livestock: part 2 – special aspects. IEC 60479-2. IEC, GenevaGoogle Scholar
  36. 36.
    International Electrotechnical Commission (2012) Medical electrical equipment – part 1: general requirements for basic safety and essential performance. IEC 60601-1:2005+A1. IEC, GenevaGoogle Scholar
  37. 37.
    Jauchem JR (2010) Deaths in custody: Are some due to electronic control devices (including TASER® devices) or excited delirium? J Forensic Leg Med 17:1–7CrossRefPubMedGoogle Scholar
  38. 38.
    Jenkins DM Jr, Murray WB, Kennett MJ, Hughes EL, Werner JR (2013) The effect of continuous application of the TASER X26 waveform on Sus scrofa. J Forensic Sci 58:684–692CrossRefPubMedGoogle Scholar
  39. 39.
    Kano M, Toyoshi T, Iwasaki S, Kato M, Shimizu M, Ota T (2005) QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci 99:501–511CrossRefPubMedGoogle Scholar
  40. 40.
    Karch SB (2016) The problem of police-related cardiac arrest. J Forensic Leg Med 41:36–41CrossRefPubMedGoogle Scholar
  41. 41.
    Khaja A, Govindarajan G, McDaniel W, Flaker G (2011) Cardiac safety of conducted electrical devices in pigs and their effect on pacemaker function. Am J Emerg Med 29:1089–1096CrossRefPubMedGoogle Scholar
  42. 42.
    Kornblum RN, Reddy SK (1991) Effects of the Taser in fatalities involving police confrontation. J Forensic Sci 36:434–438CrossRefPubMedGoogle Scholar
  43. 43.
    Kreuzer A (2016) Flüchtlinge und Kriminalität. Kriminalistik 7:445–450Google Scholar
  44. 44.
    Kroll MW, Calkins H, Luceri RM, Graham MA, Heegaard WG (2008) Sensitive swine and TASER electronic control devices. Acad Emerg Med 15:695–696CrossRefPubMedGoogle Scholar
  45. 45.
    Kroll MW, Lakkireddy DR, Stone JR, Luceri RM (2014) TASER electronic control devices and cardiac arrests: coincidental or causal? Supplement. Circulation 129:93–100CrossRefPubMedGoogle Scholar
  46. 46.
    Kroll MW, Panescu D, Carver M, Kroll RM, Hinz AF (2009) Cardiac effects of varying pulse charge and polarity of TASER conducted electrical weapons. Conf Proc IEEE Eng Med Biol Soc 2009:3195–3198. doi: 10.1109/iembs.2009.5333135 PubMedGoogle Scholar
  47. 47.
    Kroll MW, Panescu D, Ho JD, Luceri E, Igor R, Calkins H, Tchou PJ (2007) Potential errors in autopsy reports of custodial deaths temporally associated with electronic control devices: a cardiovascular perspective. American Academy of Forensic Science Annual Conference, San Antonio, S 284–285Google Scholar
  48. 48.
    Kunz SN (2016) Injuries and deaths during police operations/special weapons and tactics team. In: Byard R, Corey T, Henderson C, Payne-J (Hrsg) Encyclopedia of forensic and legal medicine, 2. Aufl. Elsevier, Amsterdam, S 249–255Google Scholar
  49. 49.
    Kunz SN, Aronshtam Y, Tränkler HR, Kraus S, Graw M, Peschel O (2014) Cardiac changes due to electronic control devices? A computer-based analysis of electrical effects at the human heart caused by an ECD pulse applied to the body’s exterior. J Forensic Sci 59:659–664CrossRefPubMedGoogle Scholar
  50. 50.
    Kunz SN, Brandtner H, Monticelli F (2012) Elektrischer Strom im menschlichen Körper. Wirkung, Anwendungsgebiete und forensischer Nachweis. Rechtsmedizin 22:495–505CrossRefGoogle Scholar
  51. 51.
    Kunz SN, Grove C (2015) Risikoeinschätzung von Elektroschockdistanzwaffen – eine Übersichtsarbeit aus gerichtsärztlicher Sicht. SIAK J 1:94–101Google Scholar
  52. 52.
    Kunz SN, Grove C, Monticelli F (2014) Medizinische Aspekte gängiger nicht-letaler Wirkmittel. Wien Med Wochenschr 164:103–108CrossRefPubMedGoogle Scholar
  53. 53.
    Kunz SN, Grove N, Fischer F (2012) Acute pathophysiological influences of conducted electrical weapons in humans: a review of current literature. Forensic Sci Int 221:1–4CrossRefPubMedGoogle Scholar
  54. 54.
    Kunz SN, Monticelli F, Kaiser C (2012) Tod durch Elektroschockdistanzwaffen – eine reine Ausschlussdiagnose? Rechtsmedizin 22:369–373CrossRefGoogle Scholar
  55. 55.
    Kunz SN, Zinka B, Fieseler S, Graw M, Peschel O (2012) Functioning and effectiveness of electronic control devices such as the TASER® M‑ and X‑ series, a review of current literature. J Forensic Sci 57:1591–1594CrossRefPubMedGoogle Scholar
  56. 56.
    Lakkireddy D, Wallick D, Verma A, Ryschon K, Kowalewski W, Wazni O, Butany J, Martin D, Tchou PJ (2008) Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin Electrophysiol 31:398–408CrossRefPubMedGoogle Scholar
  57. 57.
    Lakkireddy D, Khasnis A, Antenacci J, Ryshcon K, Chung MK, Wallick D, Kowalewski W, Patel D, Micochova H, Kondur A, Vacek J, Martin D, Natale A, Tchou P (2007) Do electrical stun guns (TASER X26) affect the functional integrity of implanted pacemakers and defibrillators? Europace 9:551–556CrossRefGoogle Scholar
  58. 58.
    Langley G (2009) The validity of animal experiments in medical research. Rev Semest Droit Anim 1:161–168Google Scholar
  59. 59.
    Leitgeb N (2014) Cardiac fibrillation risk of Taser weapons. Health Phys 106:652–659CrossRefPubMedGoogle Scholar
  60. 60.
    Leitgeb N, Niedermayr F, Neubauer R (2012) Interference of implanted cardiac pacemakers with TASER X26 dart mode application. Biomed Tech 2057:201–206Google Scholar
  61. 61.
    McDaniel W, Stratbucker R, Smith R (2000) Surface application of Taser stun guns does not cause ventricular fibrillation in canines. Proc Annu Int Conf IEEE Eng Med Biol Soc 2000Google Scholar
  62. 62.
    Nanthakumar K, Billingsley IM, Masse S, Dorian P, Cameron D, Chauhan VS, Downar E, Sevaptsidis E (2006) Cardiac electrophysiological consequence of neuromuscular incapacitating device discharges. J Am Coll Cardiol 48:798–804CrossRefPubMedGoogle Scholar
  63. 63.
    Naunheim RS, Treaster M, Aubin C (2010) Ventricular fibrillation in a man shot with a Taser. Emerg Med J 27:645–646CrossRefPubMedGoogle Scholar
  64. 64.
    Nickel R, Schummer A, Seiferle E (Hrsg) (2005) Kreislaufsystem, Haut und Hautorgane, 4. Aufl. Lehrbuch der Anatomie der Haustiere, Bd. 3. Parey, Stuttgart, S 53–56Google Scholar
  65. 65.
    Nimunkar AJ, Webster JG (2009) Safety of pulsed electric devices. Physiol Meas 30:101–114CrossRefPubMedGoogle Scholar
  66. 66.
    Otahbachi M, Cevik C, Bagdure S, Nugent K (2010) Excited delirium, restraints, and unexpected death: a review of pathogenesis. Am J Forensic Med Pathol 31:107–112CrossRefPubMedGoogle Scholar
  67. 67.
    Panescu D, Kroll M, Brave M (2015) Cardiac fibrillation risks with TASER conducted electrical weapons. Conf Proc IEEE Eng Med Biol Soc 2015:323–329. doi: 10.1109/embc.2015.7318365 PubMedGoogle Scholar
  68. 68.
    Panescu D, Kroll M, Iverson C, Brave M (2014) The sternum as an electrical shield. Conf Proc IEEE Eng Med Biol Soc 2014:4464–4470. doi: 10.1109/embc.2014.6944615 PubMedGoogle Scholar
  69. 69.
    Panescu D, Nerheim M, Kroll M (2013) Electrical safety of conducted electrical weapons relative to requirements of relevant electrical standards. Conf Proc IEEE Eng Med Biol Soc 2013:5342–5347. doi: 10.1109/embc.2013.6610756 PubMedGoogle Scholar
  70. 70.
    Payne-James JJ, Green P, Johmston A (2014) Trends in less-lethal use of force techniques by police services within England and Wales: 2007–2011. Forensic Sci Med Pathol 10:50–55CrossRefPubMedGoogle Scholar
  71. 71.
    Pippin JJ (2007) Taser research in pigs not helpful. J Am Coll Cardiol 49:731–732CrossRefPubMedGoogle Scholar
  72. 72.
    Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I (2004) Where is the evidence that animal research benefits humans? BMJ 328:514–517CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rettenberger M (2016) Die Einschätzung der Gefährlichkeit bei extremistischer Gewalt und Terrorismus. Kriminalistik 9:532–537Google Scholar
  74. 74.
    Institut für Health Care Engineering (2009) RITA I: Risikoanalyse TASER-X26-Distanzanwendung, Untersuchung in Bezug auf Stromstärken. Institut für Health Care Engineering, TU GrazGoogle Scholar
  75. 75.
    Schnabel PA, Richter J, Schmiedl A, Bach F, Barthels U, Ramsauer B, Gebhard MM, Bretschneider HJ (1991) Patterns of structural deterioration due to ischemia in Purkinje fibres and different layers of the working myocardium. Thorac Cardiovasc Surg 39:174–182CrossRefPubMedGoogle Scholar
  76. 76.
    Strote J, Range Hutson H (2006) Taser use in restraint-related deaths. Prehosp Emerg Care 10:447–450CrossRefPubMedGoogle Scholar
  77. 77.
    Torkamani A, Muse ED, Spencer EG, Rueda M, Wagner GN, Lucas JR, Topol EJ (2016) Molecular autopsy for sudden unexpected death. JAMA 316:1492–1494CrossRefPubMedGoogle Scholar
  78. 78.
    UK Government, Home Office (2015) Figures on the reported and recorded uses of TASER by police forces in England and Wales. http://data.gov.uk/dataset/recorded-use-taser-england-wales. Zugegriffen: 26. Dez 2016Google Scholar
  79. 79.
    Underwriters Laboratories (2009) UL standard for electric-fence controllers, 10. Aufl. UL 69. UL Laboratories, NorthbrookGoogle Scholar
  80. 80.
    Valentino DJ, Walter RJ, Dennis AJ, Margeta B, Starr F, Nagy KK, Bokari F, Wiley DE, Joseph KT, Roberts RR (2008) Taser X26 discharge in Swine: ventricular rhythm capture is dependent on discharge vector. J Trauma 65:1478–1485CrossRefPubMedGoogle Scholar
  81. 81.
    Vanga SR, Bommana S, Kroll MW, Swerdlow C, Lakkireddy D (2009) Taser conducted electrical weapons and implanted pacemakers and defibrillators. Confproc Ieee Eng Med Biol Soc 2009:3199–3204. doi: 10.1109/iembs.2009.5333136 Google Scholar
  82. 82.
    Vilke GM, Chan TC, Karch S (2013) Letter by Vilke et al. regarding article, “sudden cardiac arrest and death following application of shocks from a TASER electronic control device”. Circulation 127:e258CrossRefPubMedGoogle Scholar
  83. 83.
    Waffengebrauchsgesetz (WaffGebrG) (1969) https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10005345. Zugegriffen: 16. Jul 2013
  84. 84.
    Walcott GP, Kroll MW, Ideker RE (2015) Ventricular fibrillation: are swine a sensitive species? J Interv Card Electrophysiol 42:83–89CrossRefPubMedGoogle Scholar
  85. 85.
    Walter RJ, Dennis AJ, Valentino DJ, Margeta B, Nagy KK, Bokhari F, Wiley DE, Joseph KT, Roberts RR (2008) TASER X26 discharge in swine produce potentially fatal ventricular arrhythmias. Acad Emerg Med 15:66–73CrossRefPubMedGoogle Scholar
  86. 86.
    Wu JY, Sun H, O’Rourke AP, Huebner SM, Rahko PS, Will JA, Webster JG (2008) Taser blunt probe dart-to-heart distance causing ventricular fibrillation in pigs. IEEE Trans Biomed Eng 55:2768–2771. doi: 10.1109/tbme.2008.2002154 CrossRefPubMedGoogle Scholar
  87. 87.
    Zack F, Rummel J, Wegener R, Büttner A (2009) Plötzlicher Tod nach der Festnahme eines exzitierten Mannes. Rechtsmedizin 19:341–344CrossRefGoogle Scholar
  88. 88.
    Zipes DP (2012) Sudden cardiac arrest and death following application of shocks from a TASER electronic control device. Circulation 125:2417–2422CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  1. 1.Abteilung für RechtsmedizinLandspítali Universitätskrankenhaus ReykjavikReykjavikIsland
  2. 2.Institut für RechtsmedizinLudwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations