Brightness temperature of water compressed by a double shock to pressures of 60–79 GPa

Abstract

New data on the temperature of water shock-compressed to 79 GPa are presented. Thermal radiation from a water layer compressed by incident shock waves and shock waves reflected from a lithium fluoride or sapphire window was recorded in the range of incident-wave intensity of 28–36 GPa. The reflected-wave pressures were in the range of 49–79 GPa. The temperature measured at the pressure of 79 GPa was 2750 K, which is much lower than the single-shock temperature at this pressure—5270 K. The radiant flux loss at the interfaces was estimated. The temperature of water compressed by one and two shock waves was calculated using an equation of state model, and the calculation results are in good agreement with the experimental data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

b0(λ, T):

Blackbody radiance

c v :

Specific heat

L(λ, T, t):

Spectral radiance when the shock moves through the water layer

p :

Pressure in the shock-compressed matter

p 1 :

Pressure in the incident wave

p 2 :

Pressure in the reflected wave

(1 − R1)(1 − R2)(1 − R3):

Transmittance at the surfaces of the layers

(1 − R1′)(1 − R2′)(1 − R3′):

Transmittance of the boundaries after formation of the reflected shock

t :

Time

T :

True temperature of the shock-compressed matter

Tb1 and Tb2 :

Brightness temperatures

Tc1 and Tc2 :

Color temperatures

Tb1, Tc1 :

Temperature of shock-compressed water in the incident shock

u s :

Shock velocity in water

u s1 :

Velocity of the incident wave

u p :

Particle velocity in the incident wave

α :

Absorption coefficient of shocked water

Δt :

Duration of the pressure p1

ε(t):

Emissivity of shocked water

λ :

Wavelength

References

  1. 1.

    Al’tshuler, L.V.: Use of shock waves in high-pressure physics. Sov. Phys. Usp. 8, 52–91 (1965). https://doi.org/10.1070/PU1965v008n01ABEH003062

    Article  Google Scholar 

  2. 2.

    Walsh, J.M., Rice, M.H.: Dynamic compression of liquids from measurements on strong shock waves. J. Chem. Phys. 26(4), 815–823 (1957). https://doi.org/10.1063/1.1743414

    Article  Google Scholar 

  3. 3.

    Al’tshuler, L.V., Bakanova, A.A., Trunin, R.F.: Phase transformations when water is compressed by strong shock waves. Dokl. Akad. Nauk SSSR 121(1), 67–69 (1958). (in Russian)

    Google Scholar 

  4. 4.

    Sharipdzhanov, I.I., Al’tshuler, L.V., Brusnikin, S.E.: Anomalies in the shock and isentropic compressibilities of water. Combust. Explos. Shock Waves 19(5), 668–672 (1983). https://doi.org/10.1007/BF00750455

    Article  Google Scholar 

  5. 5.

    Volkov, L.P., Voloshin, N.P., Mangasarov, R.A., Simonenko, V.A., Sin’ko, G.V., Sorokin, V.L.: Shock compressibility of water at a pressure of 1 Mbar. JETP Lett. 31(9), 513–515 (1980)

    Google Scholar 

  6. 6.

    Nagayama, K., Mori, Y., Shimada, K., Nakahara, M.: Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun. J. Appl. Phys. 91(1), 476–482 (2002). https://doi.org/10.1063/1.1421630

    Article  Google Scholar 

  7. 7.

    Rice, M.H., Walsh, J.M.: Equation of state of water to 250 kilobars. J. Chem. Phys. 26(4), 824–830 (1957). https://doi.org/10.1063/1.1743415

    Article  Google Scholar 

  8. 8.

    Kormer, S.B.: Optical study of the characteristics of shock-compressed condensed dielectrics. Sov. Phys. Usp. 11, 229–254 (1968). https://doi.org/10.1070/PU1968v011n02ABEH003814

    Article  Google Scholar 

  9. 9.

    Cowperthwaite, M., Shaw, R.: C(v) equation of state for liquids. Calculation of the shock temperature of carbon tetrachloride, nitromethane, and water in the 100-kbar region. J. Chem. Phys. 53(2), 555–560 (1970). https://doi.org/10.1063/1.1674025

    Article  Google Scholar 

  10. 10.

    Lyzenga, G.A., Ahrens, T.J., Nellis, W.J., Mitchell, A.C.: The temperature of shock-compressed water. J. Chem. Phys. 76(12), 6282–6286 (1982). https://doi.org/10.1063/1.443031

    Article  Google Scholar 

  11. 11.

    Peng, X.J., Liu, F.S., Zhang, S.L., Zhang, M.J., Jing, F.Q.: The C(v) for calculating the shock temperatures of water below 80 GPa. Sci. China Phys. Mech. Astron. 54(8), 1443–1446 (2011). https://doi.org/10.1007/s11433-011-4396-8

    Article  Google Scholar 

  12. 12.

    Zel’dovich, Y.B., Kormer, S.B., Sinitsyn, M.V., Yushko, K.B.: An investigation of the optical properties of transparent substances at superhigh pressures. Dokl. Akad. Nauk SSSR 138(6), 1333–1335 (1961). (in Russian)

    Google Scholar 

  13. 13.

    Kormer, S.B., Yushko, K.B., Krishkevich, G.V.: Phase transformation of water into ice VII by shock compression. Sov. Phys. JETP. 27(6), 879–881 (1968)

    Google Scholar 

  14. 14.

    Dolan, D.H., Johnson, J.N., Gupta, Y.M.: Nanosecond freezing of water under multiple shock wave compression: continuum modeling and wave profile measurements. J. Chem. Phys. 123(6), 064702 (2005). https://doi.org/10.1063/1.1993556

    Article  Google Scholar 

  15. 15.

    Dolan, D.H., Knudson, M.D., Hall, C.A., Deeney, C.: A metastable limit for compressed liquid water. Nat. Phys. 3, 339–342 (2007). https://doi.org/10.1038/nphys562

    Article  Google Scholar 

  16. 16.

    Bastea, M., Bastea, S., Reaugh, J.E., Reisman, D.B.: Freezing kinetics in overcompressed water. Phys. Rev. B 75(17), 172104 (2007). https://doi.org/10.1103/PhysRevB.75.172104

    Article  Google Scholar 

  17. 17.

    Ree, F.H.: Molecular interaction of dense water at high temperature. J. Chem. Phys. 76(12), 6287 (1982). https://doi.org/10.1063/1.443032

    Article  Google Scholar 

  18. 18.

    Nazarov, D.V., Mikhailov, A.L., Fedorov, A.V., Manachkin, S.F., Urlin, V.D., Men’shikh, A.V., Finyushin, S.A., Davydov, V.A., Filinov, E.V.: Properties of optically transparent materials under quasi-entropic compression. Combust. Explos. Shock Waves 42(3), 351–355 (2006). https://doi.org/10.1007/s10573-006-0062-2

    Article  Google Scholar 

  19. 19.

    Urtiew, P.A.: Effect of shock loading on transparency of sapphire crystals. J. Appl. Phys. 45, 3490 (1974). https://doi.org/10.1063/1.1663807

    Article  Google Scholar 

  20. 20.

    Cao, X., Wang, Y., Li, X., Xu, L., Liu, L., Yu, Y., Qin, R., Zhu, W., Tang, S., He, L., Meng, C., Zhang, B., Peng, X.: Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa. J. Appl. Phys. 121, 115903 (2017). https://doi.org/10.1063/1.4978746

    Article  Google Scholar 

  21. 21.

    Zhang, N.C., Liu, F.S., Peng, X.J., Zhang, M.J., Chen, J.X.: Light emission properties of sapphire under shock loading in the stress range of 40–120 GPa. Sci. China Phys. Mech. Astron. 56(3), 562–567 (2013). https://doi.org/10.1007/s11433-013-5034-4

    Article  Google Scholar 

  22. 22.

    Bordzilovskii, S.A., Karakhanov, S.M., Khishchenko, K.V.: Thermal radiation from water behind the reflected shock wave. Combust. Explos. Shock Waves 54(6), 712–719 (2018). https://doi.org/10.1134/S0010508218060114

    Article  Google Scholar 

  23. 23.

    Trunin, R.F., Gudarenko, L.F., Zhernokletov, M.V., Simakov, G.V.: Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances. Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov (2006). (in Russian)

    Google Scholar 

  24. 24.

    Bordzilovskii, S.A., Karakhanov, S.M., Bordzilovskii, D.S.: Using an optical pyrometer for temperature measurements of shock-compressed polytetrafluoroethylene. Combust. Explos. Shock Waves 46(1), 81–88 (2010). https://doi.org/10.1007/s10573-010-0014-8

    Article  Google Scholar 

  25. 25.

    Boslough, M.B.: A model for time dependence in shock-induced thermal radiation of light. J. Appl. Phys. 58(9), 3394–3399 (1985). https://doi.org/10.1063/1.335756

    Article  Google Scholar 

  26. 26.

    Mitchell, A.C., Nellis, W.J.: Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. J. Chem. Phys. 76(12), 6273–6281 (1982). https://doi.org/10.1063/1.443030

    Article  Google Scholar 

  27. 27.

    Khishchenko, K.V.: Temperature and heat capacity of polymethyl methacrylate behind the front of strong shock waves. High Temp. 35(6), 991–994 (1997)

    Google Scholar 

  28. 28.

    Pistorius, C.W.F.T., Pistorius, M.C., Blakey, J.P., Admiraal, L.J.: Melting curve of ice VII to 200 kbar. J. Chem. Phys. 38, 600 (1963). https://doi.org/10.1063/1.1733711

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Karakhanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by P. J. Hazell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bordzilovskii, S.A., Karakhanov, S.M. & Khishchenko, K.V. Brightness temperature of water compressed by a double shock to pressures of 60–79 GPa. Shock Waves (2020). https://doi.org/10.1007/s00193-020-00950-3

Download citation

Keywords

  • Water
  • Shock wave
  • Temperature calculation
  • Equation of state
  • Double compression
  • Lithium fluoride
  • Sapphire