Skip to main content
Log in

An adaptive ALE scheme for non-ideal compressible fluid dynamics over dynamic unstructured meshes

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper investigates the application of mesh adaptation techniques in the non-ideal compressible fluid dynamic (NICFD) regime, a region near the vapor–liquid saturation curve where the flow behavior significantly departs from the ideal gas model, as indicated by a value of the fundamental derivative of gasdynamics less than one. A recent interpolation-free finite-volume adaptive scheme is exploited to modify the grid connectivity in a conservative way, and the governing equations for compressible inviscid flows are solved within the arbitrary Lagrangian–Eulerian framework by including special fictitious fluxes representing volume modifications due to mesh adaptation. The absence of interpolation of the solution to the new grid prevents spurious oscillations that may make the solution of the flow field in the NICFD regime more difficult and less robust. Non-ideal gas effects are taken into account by adopting the polytropic Peng–Robinson thermodynamic model. The numerical results focus on the problem of a piston moving in a tube filled with siloxane \(\mathrm {MD_4M}\), a simple configuration which can be the core of experimental research activities aiming at investigating the thermodynamic behavior of NICFD flows. Several numerical tests involving different piston movements and initial states in 2D and 3D assess the capability of the proposed adaption technique to correctly capture compression and expansion waves, as well as the generation and propagation of shock waves, in the NICFD and in the non-classical regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. \(\mathrm {MDM}\) is the acronym for the octamethyltrisiloxane, whose chemical formula is \(\mathrm {C_8 H_{24} O_2 Si_3}\).

  2. \(\mathrm {MD_4M}\) is the acronym for the tetradecamethylhexasiloxane, whose chemical formula is \(\mathrm {C_14 H_{42} O_5 Si_6}\).

References

  1. Vitale, S., Gori, G., Pini, M., Guardone, A., Economon, T.D., Palacios, F., Alonso, J.J., Colonna, P.: Extension of the SU2 open source CFD code to the simulation of turbulent flows of fuids modelled with complex thermophysical laws. 22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, AIAA Paper 2015–2760 (2015). https://doi.org/10.2514/6.2015-2760

  2. Gori, G., Vimercati, D., Guardone, A.: Non-ideal compressible-fluid effects in oblique shock waves. J. Phys. Conf. Ser. 821(1), 012003-1–012003-10 (2017). https://doi.org/10.1088/1742-6596/821/1/012003

    Article  Google Scholar 

  3. Pini, M., Vitale, S., Colonna, P., Gori, G., Guardone, A., Economon, T., Alonso, J., Palacios, F.: SU2: the open-source software for non-ideal compressible flows. J. Phys. Conf. Ser. 821(1), 012013 (2017). https://doi.org/10.1088/1742-6596/821/1/012013

    Article  Google Scholar 

  4. Ameli, A., Uusitalo, A., Turunen-Saaresti, T., Backman, J.: Numerical sensitivity analysis for supercritical \(\text{ CO }_2\) radial turbine performance and flow field. Energy Procedia 129, 1117–1124 (2017). https://doi.org/10.1016/J.EGYPRO.2017.09.233

    Article  Google Scholar 

  5. Gori, G., Zocca, M., Cammi, G., Spinelli, A., Guardone, A.: Experimental assessment of the open-source SU2 CFD suite for ORC applications. Energy Procedia 129, 256–263 (2017). https://doi.org/10.1016/J.EGYPRO.2017.09.151

    Article  Google Scholar 

  6. Head, A., Iyer, S., de Servi, C., Pini, M.: Towards the validation of a CFD solver for non-ideal compressible flows. Energy Procedia 129, 240–247 (2017). https://doi.org/10.1016/J.EGYPRO.2017.09.149

    Article  Google Scholar 

  7. Keep, J.A., Vitale, S., Pini, M., Burigana, M.: Preliminary verification of the open-source CFD solver SU2 for radial-inflow turbine applications. Energy Procedia 129, 1071–1077 (2017). https://doi.org/10.1016/J.EGYPRO.2017.09.130

    Article  Google Scholar 

  8. Colonna, P., Guardone, A.: Molecular Interpretation of nonclassical gasdynamics of dense vapors under the van der Waals model. Phys. Fluids 18(5), 56101 (2006). https://doi.org/10.1063/1.2196095

  9. Harinck, J., Guardone, A., Colonna, P.: The influence of molecular complexity on expanding flows of ideal and dense gases. Phys. Fluids 21, 086101 (2009). https://doi.org/10.1063/1.3194308

    Article  MATH  Google Scholar 

  10. Nannan, N.R., Guardone, A., Colonna, P.: Critical point anomalies include expansion shock waves. Phys. Fluids 26, 021701 (2014). https://doi.org/10.1063/1.4863555

    Article  Google Scholar 

  11. Colonna, P., Rebay, S.: Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver. Int. J. Numer. Methods Fluids 46(7), 735–765 (2004). https://doi.org/10.1002/fld.762

    Article  MathSciNet  MATH  Google Scholar 

  12. Vinokur, M., Montagné, J.L.: Generalized flux-vector splitting and Roe average for an equilibrium real gas. J. Comput. Phys. 89(2), 276–300 (1990). https://doi.org/10.1016/0021-9991(90)90145-Q

    Article  MATH  Google Scholar 

  13. Abgrall, R.: An extension of Roe’s upwind scheme to algebraic equilibrium real gas models. Comput. Fluids 19(2), 171–182 (1991). https://doi.org/10.1016/0045-7930(91)90032-D

    Article  MATH  Google Scholar 

  14. Arabi, S., Trépanier, J.Y., Camarero, R.: A simple extension of Roe’s scheme for real gases. J. Comput. Phys. 329, 16–28 (2017). https://doi.org/10.1016/j.jcp.2016.10.067

    Article  MathSciNet  MATH  Google Scholar 

  15. Colonna, P., Silva, P.: Dense gas thermodynamic properties of single and multicomponent fluids for fluid dynamics simulations. ASME J. Fluids Eng. 125(3), 414–427 (2003). https://doi.org/10.1115/1.1567306

    Article  Google Scholar 

  16. Cinnella, P., Hercus, S.: Efficient implementation of short fundamental equations of state for the numerical simulation of dense gas flows. 42nd AIAA Thermophysics Conference, Fluid Dynamics and Co-located Conferences, Honolulu, HI, AIAA Paper 2011–3947 (2011). https://doi.org/10.2514/6.2011-3947

  17. Pantano, C., Saurel, R., Schmitt, T.: An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows. J. Comput. Phys. 335, 780–811 (2017). https://doi.org/10.1016/j.jcp.2017.01.057

    Article  MathSciNet  MATH  Google Scholar 

  18. Passmann, M., aus der Wiesche, S., Joos, F.: A one-dimensional analytical calculation method for obtaining normal shock losses in supersonic real gas flows. J. Phys. Conf. Ser. 821(1), 012004-1–012004-10 (2017). https://doi.org/10.1088/1742-6596/821/1/012004

    Article  Google Scholar 

  19. From, C., Sauret, E., Armfield, S., Saha, S., Gu, Y.: Turbulent dense gas flow characteristics in swirling conical diffuser. Comput. Fluids 149, 100–118 (2017). https://doi.org/10.1016/j.compfluid.2017.03.021

    Article  MathSciNet  MATH  Google Scholar 

  20. Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech. 821, 153–199 (2017). https://doi.org/10.1017/jfm.2017.237

    Article  MathSciNet  MATH  Google Scholar 

  21. Dwight, R.P.: Goal-oriented mesh adaptation for finite volume methods using a dissipation-based error indicator. Int. J. Numer. Methods Fluids 56(8), 1193–1200 (2008). https://doi.org/10.1002/fld.1582

    Article  MathSciNet  MATH  Google Scholar 

  22. Fidkowski, K.J., Darmofal, D.L.: Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49(4), 673–694 (2011). https://doi.org/10.2514/1.J050073

    Article  Google Scholar 

  23. Formaggia, L., Perotto, S.: Anisotropic error estimates for elliptic problems. Numer. Math. 94(1), 67–92 (2003). https://doi.org/10.1007/s00211-002-0415-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Coupez, T.: Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing. J. Comput. Phys. 230(7), 2391–2405 (2011). https://doi.org/10.1016/j.jcp.2010.11.041

    Article  MathSciNet  MATH  Google Scholar 

  25. Kallinderis, Y., Baron, J.: Adaptation methods for a new Navier-Stokes algorithm. AIAA J. 27(1), 37–43 (1989). https://doi.org/10.2514/3.10091

    Article  Google Scholar 

  26. Choi, S., Alonso, J.J., van der Weide, E.: Numerical and mesh resolution requirements for accurate sonic boom prediction of complete aircraft configurations. J. Aircr. 46(4), 1126–1139 (2009). https://doi.org/10.2514/1.34367

    Article  Google Scholar 

  27. Kallinderis, Y., Lymperopoulou, E.M., Antonellis, P.: Flow feature detection for grid adaptation and flow visualization. J. Comput. Phys. 341, 182–207 (2017). https://doi.org/10.1016/j.jcp.2017.04.001

    Article  MathSciNet  Google Scholar 

  28. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods, Applied Mathematical Sciences book series, vol. 174. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7916-2

  29. Freitag, L.A., Ollivier-Gooch, C.: Tetrahedral mesh improvement using swapping and smoothing. Int. J. Numer. Methods Eng. 40(21), 3979–4002 (1997). https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21%3C3979::AID-NME251%3E3.0.CO;2-9

  30. Mavriplis, D.: Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. Int. J. Numer. Methods Fluids 34(2), 93–111 (2000). https://doi.org/10.1002/1097-0363(20000930)34:2%3C93::AID-FLD48%3E3.0.CO;2-3

  31. Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014). https://doi.org/10.1016/j.jcp.2014.01.005

    Article  MathSciNet  MATH  Google Scholar 

  32. Babuška, I., Suri, M.: The \(p\) and \(h{-}p\) versions of the finite element method, basic principles and properties. SIAM Rev. 36(4), 578–632 (1994). https://doi.org/10.1137/1036141

    Article  MathSciNet  MATH  Google Scholar 

  33. Dolejší, V.: Anisotropic \(hp\)-adaptive method based on interpolation error estimates in the \(H^{1}\)-seminorm. Appl. Math. 60(6), 597–616 (2015). https://doi.org/10.1007/s10492-015-0113-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Guardone, A., Isola, D., Quaranta, G.: Flowmesh. http://home.aero.polimi.it/flowmesh (2012)

  35. Guardone, A., Isola, D., Quaranta, G.: Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping. J. Comput. Phys. 230(20), 7706–7722 (2011). https://doi.org/10.1016/j.jcp.2011.06.026

    Article  MathSciNet  MATH  Google Scholar 

  36. Isola, D., Guardone, A., Quaranta, G.: Finite-volume solution of two-dimensional compressible flows over dynamic adaptive grids. J. Comput. Phys. 285, 1–23 (2015). https://doi.org/10.1016/j.jcp.2015.01.007

    Article  MathSciNet  MATH  Google Scholar 

  37. Re, B., Dobrzynski, C., Guardone, A.: An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids. J. Comput. Phys. 340, 26–54 (2017). https://doi.org/10.1016/j.jcp.2017.03.034

    Article  MathSciNet  MATH  Google Scholar 

  38. Colonna, P., der Stelt, T.P.: FluidProp: A Program for the Estimation of Thermophysical Properties of Fluids (2005). http://www.asimptote.nl/software/fluidprop

  39. der Waals, J.: On the Continuity of the Gas and Liquid State. PhD Thesis, University of Leiden, Leiden, The Netherlands (1873)

  40. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976). https://doi.org/10.1021/i160057a011

    Article  Google Scholar 

  41. Martin, J.J., Hou, Y.C.: Development of an equation of state for gases. AIChE J. 1(2), 142–151 (1955). https://doi.org/10.1002/aic.690010203

    Article  Google Scholar 

  42. Redlich, O., Kwong, J.N.S.: On thermodynamics of solutions V: an equation of state. Fugacities of gaseous solutions. Chem. Rev. 44(1), 233–244 (1949). https://doi.org/10.1021/cr60137a013

    Article  Google Scholar 

  43. Soave, G.: Equilibrium constants from a modified Redlich–Kwong equation of state. Chem. Eng. Sci. 27(6), 1197–1203 (1972). https://doi.org/10.1016/0009-2509(72)80096-4

    Article  Google Scholar 

  44. Dobrzynski, C., Dapogny, C., Frey, P., Froehly, A.: Mmg PLATFORM. www.mmgtools.org

  45. Bryson, A.E., Greif, R.: Measurements in a free piston shock tube. AIAA J. 3(1), 183–184 (1965). https://doi.org/10.2514/3.2828

    Article  Google Scholar 

  46. Stalker, R.J.: The free-piston shock tube. Aeronaut. Q. 17(4), 351–370 (1966). https://doi.org/10.1017/S0001925900003966

    Article  Google Scholar 

  47. Kewley, D.J., Hornung, H.G.: Free-piston shock-tube study of nitrogen dissociation. Chem. Phys. Lett. 25(4), 531–536 (1974). https://doi.org/10.1016/0009-2614(74)85360-1

    Article  Google Scholar 

  48. Hannemann, K., Itoh, K., Mee, D.J., Hornung, H.G.: Free Piston Shock Tunnels HEG, HIEST, T4 and T5. In: Igra, O., Seiler, F. (eds.) Experimental Methods of Shock Wave Research. Shock Wave Science and Technology Reference Library, vol 9, pp. 181–264. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23745-9_7.

  49. Re, B., Dobrzynski, C., Guardone, A.: Assessment of grid adaptation criteria for steady, two-dimensional, inviscid flows in non-ideal compressible fluids. Appl. Math. Comput. 319, 337–354 (2018). https://doi.org/10.1016/j.amc.2017.03.049

    Article  MathSciNet  MATH  Google Scholar 

  50. Thompson, P.A.: A fundamental derivative in gasdynamics. Phys. Fluids 14(9), 1843–1849 (1971). https://doi.org/10.1063/1.1693693

    Article  MATH  Google Scholar 

  51. Cramer, M.S., Best, L.M.: Steady, isentropic flows of dense gases. Phys. Fluids A 3(1), 219–226 (1991). https://doi.org/10.1063/1.857855

    Article  MATH  Google Scholar 

  52. Kluwick, A.: Transonic nozzle flow of dense gases. J. Fluid Mech. 247, 661–688 (1993). https://doi.org/10.1017/S0022112093000618

    Article  MathSciNet  MATH  Google Scholar 

  53. Cramer, M.S., Kluwick, A.: On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 9–37 (1984). https://doi.org/10.1017/S0022112084000975

    Article  MathSciNet  MATH  Google Scholar 

  54. Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75–130 (1989). https://doi.org/10.1103/RevModPhys.61.75

    Article  MathSciNet  MATH  Google Scholar 

  55. Nannan, N.R., Sirianni, C., Mathijssen, T., Guardone, A., Colonna, P.: The admissibility domain of rarefaction shock waves in the near-critical vapour–liquid equilibrium region of pure typical fluids. J. Fluid Mech. 795, 241–261 (2016). https://doi.org/10.1017/jfm.2016.197

    Article  MathSciNet  MATH  Google Scholar 

  56. Guardone, A., Argrow, B.M.: Nonclassical gasdynamic region of selected fluorocarbons. Phys. Fluids 17(11), 116102 (2005). https://doi.org/10.1063/1.2131922

    Article  MATH  Google Scholar 

  57. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985)

    MATH  Google Scholar 

  58. Span, R., Wagner, W.: Equations of state for technical applications. I. Simultaneously optimized functional forms for nonpolar and polar fluids. Int. J. Thermophys. 24(1), 1–39 (2003). https://doi.org/10.1023/A:1022390430888

    Article  Google Scholar 

  59. Lemmon, E.W., Span, R.: Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51(3), 785–850 (2006). https://doi.org/10.1021/je050186n

    Article  Google Scholar 

  60. Rinaldi, E., Pecnik, R., Colonna, P.: Exact Jacobians for implicit Navier–Stokes simulations of equilibrium real gas flows. J. Comput. Phys. 270, 459–477 (2014). https://doi.org/10.1016/j.jcp.2014.03.058

    Article  MathSciNet  MATH  Google Scholar 

  61. Pini, M., Spinelli, A., Persico, G., Rebay, S.: Consistent look-up table interpolation method for real-gas flow simulations. Comput. Fluids 107, 178–188 (2015). https://doi.org/10.1016/j.compfluid.2014.11.001

    Article  MathSciNet  MATH  Google Scholar 

  62. Moraga, F., Hofer, D., Saxena, S., Mallina, R.: Numerical approach for real gas simulations: part I—tabular fluid properties for real gas analysis. In: Proceedings of ASME Turbo Expo 2017, 63148, pp. 1–8 (2017). https://doi.org/10.1115/GT2017-63148

  63. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, vol. 5. McGraw-Hill, New York (2001)

    Google Scholar 

  64. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  65. Re, B.: An Adaptive Interpolation-Free Conservative Scheme for the Three-Dimensional Euler Equations on Dynamic Meshes for Aeronautical Applications. PhD Thesis, Politecnico di Milano, Department of Aerospace Science and Technology (2016)

  66. Koren, B.: Defect correction and multigrid for an efficient and accurate computation of airfoil flows. J. Comput. Phys. 77(1), 183–206 (1988). https://doi.org/10.1016/0021-9991(88)90162-3

    Article  MathSciNet  MATH  Google Scholar 

  67. Isola, D.: An Interpolation-Free Two-Dimensional Conservative ALE Scheme over Adaptive Unstructured Grids for Rotorcraft Aerodynamics. PhD Thesis, Politecnico di Milano, Department of Aerospace Engineering (2012)

  68. Carpentieri, G.: An Adjoint-Based Shape-Optimization Method for Aerodynamic Design. PhD Thesis, Technische Universiteit Delft, Netherlands (2009)

  69. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983). https://doi.org/10.1016/0021-9991(83)90136-5

    Article  MathSciNet  MATH  Google Scholar 

  70. Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  71. Guardone, A., Vigevano, L.: Roe Linearization for the van der Waals Gas. J. Comput. Phys. 175, 50–78 (2002). https://doi.org/10.1006/jcph.2001.6915

    Article  MATH  Google Scholar 

  72. Glaister, P.: An approximate linearised Riemann solver for the Euler equations for real gases. J. Comput. Phys. 74(2), 382–408 (1988). https://doi.org/10.1016/0021-9991(88)90084-8

    Article  MATH  MathSciNet  Google Scholar 

  73. Cox, C.F., Cinnella, P.: General solution procedure for flows in local chemical equilibrium. AIAA J. 32(3), 519–527 (1994). https://doi.org/10.2514/3.12016

    Article  MATH  Google Scholar 

  74. Toumi, I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102(2), 360–373 (1992). https://doi.org/10.1016/0021-9991(92)90378-C

    Article  MathSciNet  MATH  Google Scholar 

  75. Guardone, A.: Three-dimensional shock tube flows for dense gases. J. Fluid Mech. 583, 423–442 (2007). https://doi.org/10.1017/S0022112007006313

    Article  MathSciNet  MATH  Google Scholar 

  76. Mottura, L., Vigevano, L., Zaccanti, M.: An evaluation of Roe’s scheme generalizations for equilibrium real gas flows. J. Comput. Phys. 138(2), 354–399 (1997). https://doi.org/10.1006/jcph.1997.5838

    Article  MathSciNet  MATH  Google Scholar 

  77. Cinnella, P.: Roe-type schemes for dense gas flow computations. Comput. Fluids 35(10), 1264–1281 (2006). https://doi.org/10.1016/j.compfluid.2005.04.007

    Article  MATH  Google Scholar 

  78. Selmin, V.: The node-centred finite volume approach: bridge between finite differences and finite elements. Comput. Methods Appl. Mech. Eng. 102(1), 107–138 (1993). https://doi.org/10.1016/0045-7825(93)90143-L

    Article  MathSciNet  MATH  Google Scholar 

  79. Batina, J.T.: Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J. 28(8), 1381–1388 (1990). https://doi.org/10.2514/3.25229

    Article  Google Scholar 

  80. Venkatakrishnan, V., Mavriplis, D.: Implicit method for the computation of unsteady flows on unstructured grids. J. Comput. Phys. 127(2), 380–397 (1996). https://doi.org/10.1006/jcph.1996.0182

    Article  MATH  Google Scholar 

  81. Degand, C., Farhat, C.: A three-dimensional torsional spring analogy method for unstructured dynamic meshes. Comput. Struct. 80(3–4), 305–316 (2002). https://doi.org/10.1016/S0045-7949(02)00002-0

    Article  Google Scholar 

  82. Hirt, C., Amsden, A.A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974). https://doi.org/10.1016/0021-9991(74)90051-5

    Article  MATH  Google Scholar 

  83. Donea, J., Giuliani, S., Halleux, J.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1), 689–723 (1982). https://doi.org/10.1016/0045-7825(82)90128-1

    Article  MATH  Google Scholar 

  84. Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Eng. 193(39–41), 4097–4116 (2004). https://doi.org/10.1016/j.cma.2003.09.028

    Article  MathSciNet  MATH  Google Scholar 

  85. Mavriplis, D.J., Yang, Z.: Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes. J. Comput. Phys. 213(2), 557–573 (2006). https://doi.org/10.1016/j.jcp.2005.08.018

    Article  MathSciNet  MATH  Google Scholar 

  86. Étienne, S., Garon, A., Pelletier, D.: Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow. J. Comput. Phys. 228(7), 2313–2333 (2009). https://doi.org/10.1016/j.jcp.2008.11.032

    Article  MathSciNet  MATH  Google Scholar 

  87. Lesoinne, M., Farhat, C.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Eng. 134(1–2), 71–90 (1996). https://doi.org/10.1016/0045-7825(96)01028-6

    Article  MATH  Google Scholar 

  88. Johnson, A.A., Tezduyar, T.E.: Advanced mesh generation and update methods for 3D flow simulations. Comput. Mech. 23(2), 130–143 (1999). https://doi.org/10.1007/s004660050393

    Article  MATH  Google Scholar 

  89. Hassan, O., Probert, E., Morgan, K., Weatherill, N.: Unsteady flow simulation using unstructured meshes. Comput. Methods Appl. Mech. Eng. 189(4), 1247–1275 (2000). https://doi.org/10.1016/S0045-7825(99)00376-X

    Article  MATH  Google Scholar 

  90. Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elem. Anal. Des. 25(1–2), 61–83 (1997). https://doi.org/10.1016/S0168-874X(96)00057-1

    Article  MathSciNet  MATH  Google Scholar 

  91. Dolejší, V.: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1(3), 165–178 (1998). https://doi.org/10.1007/s007910050015

    Article  MATH  Google Scholar 

  92. Del Pino, S.: Metric-based mesh adaptation for 2D Lagrangian compressible flows. J. Comput. Phys. 230(5), 1793–1821 (2011). https://doi.org/10.1016/j.jcp.2010.11.030

    Article  MathSciNet  MATH  Google Scholar 

  93. Frey, P., Alauzet, F.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194(48–49), 5068– 5082 (2005). https://doi.org/10.1016/j.cma.2004.11.025

    Article  MathSciNet  MATH  Google Scholar 

  94. Re, B., Guardone, A., Dobrzynski, C.: An adaptive conservative ALE approach to deal with large boundary displacements in three-dimensional inviscid simulations. 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, Grapevine, TX, AIAA Paper 2017–1945 (2017). doi: https://doi.org/10.2514/6.2017-1945.

  95. Re, B., Guardone, A., Dobrzynski, C.: Numerical simulation of shock-tube piston problems with adaptive, anisotropic meshes. In: 7th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Rhodes Island, Greece, pp. 1227–1238 (2017)

  96. Dobrzynski, C., Frey, P.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th International Meshing Roundtable. Springer, Heidelberg, pp. 177–194 (2008). https://doi.org/10.1007/978-3-540-87921-3_11

  97. Borouchaki, H., Hecht, F., Frey, P.: Mesh gradation control. Int. J. Numer. Methods Eng. 43(6), 1143–1165 (1998). https://doi.org/10.1002/(SICI)1097-0207(19981130)43:6%3c1143::AID-NME470%3e3.0.CO;2-I

    Article  MathSciNet  MATH  Google Scholar 

  98. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP. National Institute of Standards and Technology, Boulder, CO (2013). https://doi.org/10.18434/T4JS3C. www.nist.gov/srd/refprop

  99. Colonna, P., Nannan, N.R., Guardone, A., Lemmon, E.W.: Multiparameter equations of state for selected siloxanes. Fluid Phase Equilib. 244(2), 193–211 (2006). https://doi.org/10.1016/j.fluid.2006.04.015

    Article  Google Scholar 

  100. Thompson, P.A.: Compressible-Fluid Dynamics. McGraw-Hill, New York (1972)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the European Research Council (Consolidator Grant No. 617603, Project NSHOCK, funded under the FP7-IDEAS-ERC scheme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Re.

Additional information

Communicated by D. Zeidan and H. D. Ng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Re, B., Guardone, A. An adaptive ALE scheme for non-ideal compressible fluid dynamics over dynamic unstructured meshes. Shock Waves 29, 73–99 (2019). https://doi.org/10.1007/s00193-018-0840-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0840-2

Keywords

Navigation