Advertisement

Shock Waves

pp 1–12 | Cite as

Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder

  • W. Zhang
  • L. Zou
  • X. Zheng
  • B. Wang
Original Article

Abstract

The interaction of a weak shock wave with a heavy elliptic gas cylinder is investigated by solving the Eulerian equations in two-dimensional Cartesian coordinates. An interface-capturing algorithm based on the \(\gamma \)-model and the finite volume weighed essential non-oscillatory scheme is employed to trace the motion of the discontinuous interface. Three gas pairs with different Atwood numbers ranging from 0.21 to 0.91 are considered, including carbon dioxide cylinder in air (air–\(\hbox {CO}_2\)), sulfur hexafluoride cylinder in air (air–\(\hbox {SF}_6\)), and krypton cylinder in helium (He–Kr). For each gas pair, the elliptic cylinder aspect ratio ranging from 1/4 to 4 is defined as the ratio of streamwise axis length to spanwise axis length. Special attention is given to the aspect ratio effects on wave patterns and circulation. With decreasing aspect ratio, the wave patterns in the interaction are summarized as transmitted shock reflection, regular interaction, and transmitted shock splitting. Based on the scaling law model of Samtaney and Zabusky (J Fluid Mech 269:45–78, 1994), a theoretical approach is developed for predicting the circulation at the time when the fastest shock wave reaches the leeward pole of the gas cylinder (i.e., the primary deposited circulation). For both prolate (i.e., the minor axis of the ellipse is along the streamwise direction) and oblate (i.e., the minor axis of the ellipse is along the spanwise direction) cases, the proposed approach is found to estimate the primary deposited circulation favorably.

Keywords

Shock wave Gas cylinder Richtmyer–Meshkov instability Circulation 

Notes

Acknowledgements

This work was supported by the Science Challenge Project (No. TZ2016001) and the National Natural Science Foundation of China (Nos. 11472253, 11602247, 11672277, 11772309, 51676111 and NSAF: U1730104).

References

  1. 1.
    Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960).  https://doi.org/10.1002/cpa.3160130207 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969).  https://doi.org/10.1007/BF01015969 CrossRefGoogle Scholar
  3. 3.
    Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011).  https://doi.org/10.1146/annurev-fluid-122109-160744 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (1993).  https://doi.org/10.2514/3.11696 CrossRefGoogle Scholar
  5. 5.
    Arnett, W.D., Bahcall, J.N., Kirshner, R.P., Woosley, S.E.: Supernova 1987a. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989).  https://doi.org/10.1146/annurev.aa.27.090189.003213 CrossRefGoogle Scholar
  6. 6.
    Lindl, J., Landen, O., Edwards, J., Moses, E., NIC Team: Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501 (2014).  https://doi.org/10.1063/1.4865400
  7. 7.
    Haehn, N., Ranjan, D., Weber, C., Oakley, J., Rothamer, D., Bonazza, R.: Reacting shock bubble interaction. Combust. Flame 159, 1339–1350 (2012).  https://doi.org/10.1016/j.combustflame.2011.10.015 CrossRefGoogle Scholar
  8. 8.
    Diegelmann, F., Tritschler, V., Hickel, S., Adams, N.: On the pressure dependence of ignition and mixing in two-dimensional reactive shock–bubble interaction. Combust. Flame 163, 414–426 (2016).  https://doi.org/10.1016/j.combustflame.2015.10.016 CrossRefGoogle Scholar
  9. 9.
    Diegelmann, F., Hickel, S., Adams, N.: Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction. Combust. Flame 174, 85–99 (2016).  https://doi.org/10.1016/j.combustflame.2016.09.014 CrossRefGoogle Scholar
  10. 10.
    Diegelmann, F., Hickel, S., Adams, N.: Three-dimensional reacting shock–bubble interaction. Combust. Flame 181, 300–314 (2017).  https://doi.org/10.1016/j.combustflame.2017.03.026 CrossRefGoogle Scholar
  11. 11.
    Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J., Ranjan, D.: Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779–825 (2017).  https://doi.org/10.1017/jfm.2017.664 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bai, X., Deng, X., Jiang, L.: A comparative study of the single-mode Richtmyer–Meshkov instability. Shock Waves (2018).  https://doi.org/10.1007/s00193-017-0764-2
  13. 13.
    Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994).  https://doi.org/10.1017/S0022112094001485 CrossRefGoogle Scholar
  14. 14.
    Bagabir, A., Drikakis, D.: Mach number effects on shock–bubble interaction. Shock Waves 11, 209–218 (2001).  https://doi.org/10.1007/PL00004076 CrossRefzbMATHGoogle Scholar
  15. 15.
    Shankar, S.K., Kawai, S., Lele, S.K.: Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Phys. Fluids 23, 024102 (2011).  https://doi.org/10.1063/1.3553282 CrossRefGoogle Scholar
  16. 16.
    Tritschler, V.K., Avdonin, A., Hickel, S., Hu, X.Y., Adams, N.A.: Quantification of initial-data uncertainty on a shock-accelerated gas cylinder. Phys. Fluids 26, 026101 (2014).  https://doi.org/10.1063/1.4865756 CrossRefGoogle Scholar
  17. 17.
    Luo, X., Wang, M., Si, T., Zhai, Z.: On the interaction of a planar shock with an \(\text{ SF }_6\) polygon. J. Fluid Mech. 773, 366–394 (2015).  https://doi.org/10.1017/jfm.2015.257 CrossRefGoogle Scholar
  18. 18.
    Zhai, Z., Wang, M., Si, T., Luo, X.: On the interaction of planar shock with a light polygonal interface. J. Fluid Mech. 757, 800–816 (2014).  https://doi.org/10.1017/jfm.2014.516 CrossRefGoogle Scholar
  19. 19.
    Wang, M., Si, T., Luo, X.: Experimental study on the interaction of the planar shock wave with polygonal helium cylinders. Shock Waves 25, 347–355 (2015).  https://doi.org/10.1007/s00193-014-0528-1 CrossRefGoogle Scholar
  20. 20.
    Ray, J., Samtaney, R., Zabusky, N.J.: Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids 12, 707–716 (2000).  https://doi.org/10.1063/1.870276 CrossRefzbMATHGoogle Scholar
  21. 21.
    Bai, J., Zou, L., Wang, T., Liu, K., Huang, W., Liu, J., Li, P., Tan, D., Liu, C.: Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Phys. Rev. E 82, 056318 (2010).  https://doi.org/10.1103/PhysRevE.82.056318 CrossRefGoogle Scholar
  22. 22.
    Zou, L., Liao, S., Liu, C., Wang, Y., Zhai, Z.: Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys. Fluids 28, 036101 (2016).  https://doi.org/10.1063/1.4943127 CrossRefGoogle Scholar
  23. 23.
    Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X., Luo, X.: On the interaction of planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289–317 (2017).  https://doi.org/10.1017/jfm.2017.528 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Layes, G., Jourdan, G., Houas, L.: Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett. 91, 174502 (2003).  https://doi.org/10.1103/PhysRevLett.91.174502 CrossRefGoogle Scholar
  25. 25.
    Ranjan, D., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of a strongly shocked gas bubble. Phys. Rev. Lett. 94, 184507 (2005).  https://doi.org/10.1103/PhysRevLett.94.184507 CrossRefGoogle Scholar
  26. 26.
    Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys. Rev. Lett. 98, 024502 (2007).  https://doi.org/10.1103/PhysRevLett.98.024502 CrossRefGoogle Scholar
  27. 27.
    Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H., Bonazza, R.: A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85–124 (2008).  https://doi.org/10.1017/S0022112007008749 CrossRefzbMATHGoogle Scholar
  28. 28.
    Georgievskiy, P.Y., Levin, V.A., Sutyrin, O.G.: Interaction of a shock with elliptical gas bubbles. Shock Waves 25, 357–369 (2015).  https://doi.org/10.1007/s00193-015-0557-4 CrossRefGoogle Scholar
  29. 29.
    Rudinger, G., Somers, L.M.: Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960).  https://doi.org/10.1017/S0022112060001419 CrossRefzbMATHGoogle Scholar
  30. 30.
    Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988).  https://doi.org/10.1017/S0022112088000904 CrossRefGoogle Scholar
  31. 31.
    Yang, J., Kubota, T., Zukoshi, E.E.: A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994).  https://doi.org/10.1017/S0022112094003307 CrossRefzbMATHGoogle Scholar
  32. 32.
    Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996).  https://doi.org/10.1006/jcph.1996.0085 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006).  https://doi.org/10.1016/j.jcp.2006.04.018 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Movahed, P., Johnsen, E.: A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability. J. Comput. Phys. 239, 166–186 (2013).  https://doi.org/10.1016/j.jcp.2013.01.016 MathSciNetCrossRefGoogle Scholar
  35. 35.
    Beig, S.A., Johnsen, E.: Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing. J. Comput. Phys. 302, 548–566 (2015).  https://doi.org/10.1016/j.jcp.2015.09.018 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014).  https://doi.org/10.1016/j.jcp.2014.06.003 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, X., Yang, D., Wu, J., Luo, X.: Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27, 064104 (2015).  https://doi.org/10.1063/1.4922613 CrossRefGoogle Scholar
  38. 38.
    Haselbacher, A.: On impedance in shock-refraction problems. Shock Waves 22, 381–384 (2012).  https://doi.org/10.1007/s00193-012-0377-8 CrossRefGoogle Scholar
  39. 39.
    Xiang, G., Wang, B.: Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity. J. Fluid Mech. 825, 825–852 (2017).  https://doi.org/10.1017/jfm.2017.403 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Hawker, N.A., Ventikos, Y.: Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study. J. Fluid Mech. 701, 59–97 (2012).  https://doi.org/10.1017/jfm.2012.132 CrossRefzbMATHGoogle Scholar
  41. 41.
    Abd-el-fattah, A.M., Henderson, L.F.: Shock waves at a fast-slow gas interface. J. Fluid Mech. 86, 15–32 (1978).  https://doi.org/10.1017/S0022112078000981 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Shock Wave and Detonation Physics, Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangChina
  2. 2.School of AerospaceTsinghua UniversityBeijingChina
  3. 3.Mechanical Engineering, Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations