Shock Waves

, Volume 28, Issue 3, pp 489–511 | Cite as

Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids

  • Q. Pontalier
  • J. Loiseau
  • S. Goroshin
  • D. L. Frost
Original Article


The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.


Blast wave mitigation Powder compaction Particle–blast interaction Explosive particle dispersal 



The authors thank Rick Guilbeault at the Canadian Explosive Research Laboratory for assistance with the experiments and A. Longbottom of Fluid Gravity Engineering for discussions and the Defense Threat Reduction Agency for financial support. The authors also acknowledge the assistance of Yann Grégoire for the processing of the images in Fig. 25. The authors would also like to thank the three anonymous reviewers for their many constructive comments.

Supplementary material

193_2018_821_MOESM1_ESM.pdf (486 kb)
Supplementary material 1 (pdf 486 KB)
193_2018_821_MOESM2_ESM.mpg (11 mb)
Supplementary material 2 (mpg 11250 KB)
193_2018_821_MOESM3_ESM.mpg (10.3 mb)
Supplementary material 3 (mpg 10512 KB)
193_2018_821_MOESM4_ESM.avi (2.2 mb)
Supplementary material 4 (avi 2276 KB)
193_2018_821_MOESM5_ESM.avi (9.3 mb)
Supplementary material 5 (avi 9488 KB)
193_2018_821_MOESM6_ESM.avi (18 mb)
Supplementary material 6 (avi 18392 KB)
193_2018_821_MOESM7_ESM.avi (10.6 mb)
Supplementary material 7 (avi 10885 KB)
193_2018_821_MOESM8_ESM.avi (19.6 mb)
Supplementary material 8 (avi 20105 KB)
193_2018_821_MOESM9_ESM.avi (11.3 mb)
Supplementary material 9 (avi 11568 KB)
193_2018_821_MOESM10_ESM.avi (23 mb)
Supplementary material 10 (avi 23519 KB)


  1. 1.
    Cheng, M., Hung, K.C., Chong, O.Y.: Numerical study of water mitigation effects on blast wave. Shock Waves 14(3), 217–223 (2005). CrossRefzbMATHGoogle Scholar
  2. 2.
    Allen, R.M., Kirkpatrick, D.J., Longbottom, A.W., Milne, A.M., Bourne, N.K.: Experimental and numerical study of free-field blast mitigation. AIP Conf. Proc. 706, 823–826 (2004). CrossRefGoogle Scholar
  3. 3.
    Resnyansky, A.D., Delaney, T.G.: Experimental study of blast mitigation in a water mist. Technical Report, DSTO Defence Science and Technology Organisation, Edinburgh, South Australia, Australia (2006)Google Scholar
  4. 4.
    Schwer, D., Kailasanath, K.: Blast mitigation by water mist (3)—mitigation of confined and unconfined blasts. Technical Report NRL/MR/6410-06-8976, Naval Research Laboratory, Washington, DC, USA (2006)Google Scholar
  5. 5.
    Del Prete, E., Chinnayya, A., Domergue, L., Hadjadj, A., Haas, J.-F.: Blast wave mitigation by dry aqueous foams. Shock Waves 23(1), 39–53 (2013). CrossRefGoogle Scholar
  6. 6.
    Gelfand, B.E.: Blast waves attenuation in two-phase media. In: Symposium on Interdisciplinary Shock Wave Research, pp. 150–166, Sendai, Japan (2004)Google Scholar
  7. 7.
    Raspet, R., Powers, J.M., Panczak, T.D., Butler, P.B., Jahani, F.: Attenuation of blast waves using foam and other materials. Technical Report N-89/01, US Army Construction Engineering Construction Laboratory, Champaign, IL, USA (1989)Google Scholar
  8. 8.
    Kitagawa, K., Yamashita, S., Takayama, K., Yasuhara, M.: Attenuation properties of blast wave through porous layer. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 73–78. Springer, Berlin, Heidelberg (2009).
  9. 9.
    Hartman, W.F., Boughton, B.A., Larsen, M.E.: Blast mitigation capabilities of aqueous foam. Technical Report SAND2006-0533, Sandia National Laboratories, Albuquerque, NM, USA (2006).
  10. 10.
    Britan, A., Shapiro, H., Ben-Dor, G.: Foams for blast mitigation. In: Stevenson, P. (ed.) Foam Engineering: Fundamentals and Applications, chap. 19, pp. 477–512. Wiley, Hoboken (2012)Google Scholar
  11. 11.
    Nesterenko, V.F.: Shock (blast) mitigation by soft condensed matter. In: MRS Symp. Proc., vol. 759, pp. MM4.3.1–4.3.12 (2003).
  12. 12.
    Britan, A., Ben-Dor, G., Igra, O., Shapiro, H.: Shock waves attenuation by granular filters. Int. J. Multiph. Flow 27(4), 617–634 (2001). CrossRefzbMATHGoogle Scholar
  13. 13.
    Medvedev, S.P., Frolov, S.M., Gel’fand, B.E.: Attenuation of shock waves by screens of granular material. J. Eng. Phys. 58(6), 714–718 (1990). CrossRefGoogle Scholar
  14. 14.
    Langhorst, B., Cook, C., Schondel, J., Chu, H.S.: Material systems for blast-energy dissipation. In: IMPLAST 2010 Conference, pp. 1–8. Society for Experimental Mechanics, Providence, RI, USA (2010)Google Scholar
  15. 15.
    Endo, K., Kitagawa, K., Yasuhara, M.: Diffusion effect of blast pressure in porous complex media. In: 39th AIAA Fluid Dynamics Conference, Number June in Fluid Dynamics and Co-located Conferences, San Antonio, Texas, AIAA Paper 2009-3569. American Institute of Aeronautics and Astronautics (2009).
  16. 16.
    Wang, Z., Lu, Y.: Numerical analysis on dynamic deformation mechanism of soils under blast loading. Soil Dyn. Earthq. Eng. 23(8), 705–714 (2003). CrossRefGoogle Scholar
  17. 17.
    Lu, Y., Wang, Z., Chong, K.: A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dyn. Earthq. Eng. 25(4), 275–288 (2005). CrossRefGoogle Scholar
  18. 18.
    Ambrosini, R.D., Luccioni, B.M., Danesi, R.F., Riera, J.D., Rocha, M.M.: Size of craters produced by explosive charges on or above the ground surface. Shock Waves 12(1), 69–78 (2002). CrossRefGoogle Scholar
  19. 19.
    Loiseau, J., Pontalier, Q., Milne, A., Goroshin, S., Frost, D.L.: Terminal velocity of liquids and granular materials accelerated by a high explosive. In: 24th International Symposium on Military Aspects of Blast and Shock (MABS 24), pp. 1–13, Halifax, Canada (2016)Google Scholar
  20. 20.
    Gurney, R.W.: The initial velocities of fragments from bombs, shells, and grenades. Technical Report (405), BRL, Aberdeen Proving Ground, MD, USA (1943)Google Scholar
  21. 21.
    Cooper, P.W.: Explosives Engineering. Wiley-VCH, Weinheim (1996)Google Scholar
  22. 22.
    Frost, D.L., Loiseau, J., Marr, B.J., Goroshin, S., Gregoire, Y., Petel, O., Goroshin, S., Zhang, F.: Particle segregation during explosive dispersal of binary particle mixtures. Phys. Fluids 24(9), 1–6 (2012). CrossRefGoogle Scholar
  23. 23.
    Frost, D.L., Grégoire, Y., Petel, O., Goroshin, S., Zhang, F.: Particle jet formation during explosive dispersal of solid particles. Phys. Fluids 24, 091109 (2012). CrossRefGoogle Scholar
  24. 24.
    Milne, A.M., Floyd, E., Longbottom, A.W., Taylor, P.: Dynamic fragmentation of powders in spherical geometry. Shock Waves 24(5), 501–513 (2014). CrossRefGoogle Scholar
  25. 25.
    Milne, A.M., Longbottom, A., Frost, D.L., Loiseau, J., Goroshin, S., Petel, O.: Explosive fragmentation of liquids in spherical geometry. Shock Waves 27, 383–393 (2017). CrossRefGoogle Scholar
  26. 26.
    Loiseau, J., Pontalier, Q., Milne, A.M., Goroshin, S., Frost, D.L.: Terminal velocity of liquids and granular materials dispersed by a high explosive. Shock Waves 28(3) (2018).
  27. 27.
    Kleine, H., Timofeev, E., Takayama, K.: Laboratory-scale blast wave phenomena—optical diagnostics and applications. Shock Waves 14(5–6), 343–357 (2005). CrossRefGoogle Scholar
  28. 28.
    Panigrahi, P.K., Muralidhar, K.: Laser schlieren and shadowgraph. In: Methods in Heat and Mass Transfer: Visualization and Analysis, chap. 2, pp. 23–46. Springer, New York (2012).
  29. 29.
    Venkatakrishnan, L., Meier, G.E.A.: Density measurements using the background oriented schlieren technique. Exp. Fluids 37(2), 237–247 (2004). CrossRefGoogle Scholar
  30. 30.
    Ramanah, D., Raghunath, S., Mee, D.J., Rösgen, T., Jacobs, P.A.: Background oriented schlieren for flow visualisation in hypersonic impulse facilities. Shock Waves 17(1–2), 65–70 (2007). CrossRefGoogle Scholar
  31. 31.
    Hargather, M.J.: Background-oriented schlieren diagnostics for large-scale explosive testing. Shock Waves 23(5), 529–536 (2013). CrossRefGoogle Scholar
  32. 32.
    Sommersel, O.K., Bjerketvedt, D., Christensen, S.O., Krest, O., Vaagsaether, K.: Application of background oriented schlieren for quantitative measurements of shock waves from explosions. Shock Waves 18(4), 291–297 (2008). CrossRefzbMATHGoogle Scholar
  33. 33.
    Yamamoto, S., Tagawa, Y., Kameda, M.: Application of background-oriented schlieren (BOS) technique to a laser-induced underwater shock wave. Exp. Fluids 56, 93 (2015). CrossRefGoogle Scholar
  34. 34.
    Anderson, J.G., Parry, S.L., Ritzel, D.V.: Time dependent blast wave properties from shock wave tracking with high speed video. In: 24th International Symposium on Military Aspects of Blast and Shock (MABS 24), pp. 1–20, Halifax, Canada (2016)Google Scholar
  35. 35.
    Campbell, I.J., Pitcher, A.S.: Shock waves in a liquid containing gas bubbles. Proc. R. Soc. Lond. A 243(1235), 534–545 (1958). CrossRefzbMATHGoogle Scholar
  36. 36.
    Dewey, J.M.: The properties of a blast wave obtained from an analysis of the particle trajectories. Proc. R. Soc. Lond. A 324, 275–299 (1971). CrossRefGoogle Scholar
  37. 37.
    Kleine, H., Dewey, J.M., Ohashi, K., Mizukaki, T., Takayama, K.: Studies of the TNT equivalence of silver azide charges. Shock Waves 13(2), 123–138 (2003). CrossRefGoogle Scholar
  38. 38.
    Kinney, G.F., Graham, K.J.: Explosive Shocks in Air, 2nd edn. Springer, New York (1985). CrossRefGoogle Scholar
  39. 39.
    Swisdak, M.M. Jr.: Explosion effects and properties—part 1—explosion effects in air. Technical Report NSWC/WOL/TR-75-116, White Oak, Silver Spring, Maryland (1975)Google Scholar
  40. 40.
    Bogosian, D., Yokota, M., Rigby, S.: TNT equivalence of C-4 and PE4: a review of traditional sources and recent data. In: 24th International Symposium on Military Aspects of Blast and Shock (MABS 24), pp. 1–15 (2016)Google Scholar
  41. 41.
    Brode, H.L.: Blast wave from a spherical charge. Phys. Fluids 2(2), 217–229 (1959). CrossRefzbMATHGoogle Scholar
  42. 42.
    Biss, M.M., McNesby, K.L.: Optically measured explosive impulse. Exp. Fluids 55(6), 1749 (2014). CrossRefGoogle Scholar
  43. 43.
    Pontalier, Q., Lhoumeau, M., Frost, D.L.: Blast wave mitigation in granular materials. In: 20th Biennial APS Conference on Shock Compression of Condensed Matter (SCCM), pp. 1–5, St. Louis, MO, USA. AIP Conference Proceedings (2017)Google Scholar
  44. 44.
    Milne, A.M.: Gurney analysis of porous shell. Propellants Explos. Pyrotech. 41(4), 665–671 (2016). CrossRefGoogle Scholar
  45. 45.
  46. 46.
  47. 47.
    Pontalier, Q., Lhoumeau, M.G., Milne, A.M., Longbottom, A.W., Frost, D.L.: Numerical investigation of particle–blast interaction during explosive dispersal of liquids and granular materials. Shock Waves 28(3) (2018).
  48. 48.
    Cheesman, R., Tilbury, C.: Blast and debris in the near field—diagnostic techniques and calculational tools to predict combined impulse loading. In: 24th International Symposium on Military Aspects of Blast and Shock (MABS 24), pp. 1–20, Halifax, Canada (2016)Google Scholar
  49. 49.
    Frost, D.L., Ornthanalai, C., Zarei, Z., Tanguay, V., Zhang, F.: Particle momentum effects from the detonation of heterogeneous explosives. J. Appl. Phys. 101(11), 113529 (2007). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.McGill UniversityMontrealCanada
  2. 2.Chemistry and Chemical Engineering DepartmentRoyal Military CollegeKingstonCanada

Personalised recommendations