Advertisement

Shock Waves

, Volume 28, Issue 2, pp 349–377 | Cite as

Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties

  • C. M. James
  • D. E. Gildfind
  • S. W. Lewis
  • R. G. Morgan
  • F. Zander
Original Article

Abstract

Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.

Keywords

Expansion tube Free piston driver Shock tunnel Shock tube Impulse facility Flow condition development 

Notes

Acknowledgements

The authors wish to thank: all X2 operators past and present for their support with operating the facility and for their suggestions and recommendations for this code project and the related experiment analysis project; F. De Beurs, N. Duncan, and the EAIT Faculty Workshop Group for technical support on X2; The Australian Research Council for support and funding; The Queensland Smart State Research Facilities Fund 2005 for support and funding; P.A. Jacobs and R.J. Gollan for managing the CFCFD repository and for generally being helpful, knowledgeable, and supportive of PITOT over the last five years; E.J. Fahy for support and being one of the first users of the code; S. Gu for help capturing the data for the experiments presented in Sect. 4.4.1; E.J. Bourke for help correctly explaining some of the statistical information; P. Toniato for writing the L1d3 scripting and analysis codes used to perform the simulations and extract the data shown in Fig. 6; T.G. Cullen for reading the paper and providing some useful comments.

References

  1. 1.
    Morgan, R.: A review of the use of expansion tubes for creating superorbital flows. In: 35th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, USA, January 6–10, AIAA Paper 1997-279 (1997). doi: 10.2514/6.1997-279
  2. 2.
    Leibowitz, L.: Attainment of Jupiter entry shock velocities. AIAA J. 13, 403–405 (1975). doi: 10.2514/3.49715 CrossRefGoogle Scholar
  3. 3.
    Morgan, R.: Free piston driven expansion tubes. In: Ben-Dor, G. (ed.) A Handbook of Shock Waves, Chap. 4.3, vol. 1, pp. 603–622. Academic Press, New York (2001). doi: 10.1016/B978-012086430-0/50014-2 CrossRefGoogle Scholar
  4. 4.
    Park, C.: Thermochemical relaxation in shock tunnels. J. Thermophys. Heat Transf. 20(4), 689–698 (2006). doi: 10.2514/1.22719 CrossRefGoogle Scholar
  5. 5.
    Resler, E., Bloxsom, D.: Very High Mach Number Principles by Unsteady Flow Principle. Cornell University Graduate School of Aerodynamic Engineering, Ithaca (1952)Google Scholar
  6. 6.
    Trimpi, R.: A preliminary theoretical study of the expansion tube, a new device for producing high-enthalpy short-duration hypersonic gas flows. NASA TR R-133, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1962)Google Scholar
  7. 7.
    Trimpi, R., Callis, L.: A perfect-gas analysis of the expansion tunnel, a modification to the expansion tube. NASA TR R-223, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1965)Google Scholar
  8. 8.
    Trimpi, R.: A theoretical investigation of simulation in expansion tubes and tunnels. NASA TR R-243, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1966)Google Scholar
  9. 9.
    Norfleet, G., Loper, F.: A theoretical real-gas analysis of the expansion tunnel. Technical Report 66-71, Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA (1966)Google Scholar
  10. 10.
    Jones, J.: Some performance characteristics of the LRC 3 and 3/4 inch pilot expansion tube using an unheated hydrogen driver. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 7–26. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)Google Scholar
  11. 11.
    Givens, J., Page, W., Reynolds, R.: Evaluation of flow properties in a combustion-driven expansion tube operating at 7.5 km/sec. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 27–48. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)Google Scholar
  12. 12.
    Norfleet, G., Lacey Jr, J., Whitfield, J.: Results of an experimental investigation of the performance of an expansion tube. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 49–110. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)Google Scholar
  13. 13.
    Spurk, J.: Design, operation, and preliminary results of the BRL expansion tube. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 111–144. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)Google Scholar
  14. 14.
    Jones, J., Moore, J.: Exploratory study of performance of the Langley pilot model expansion tube with a hydrogen driver. Technical Note D-3421, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1966)Google Scholar
  15. 15.
    Miller, C.G., Jones, J.: Development and performance of the NASA Langley Research Center expansion tube/tunnel, a hypersonic-hypervelocity real-gas facility. In: The 14th International Symposium on Shock Waves, Sydney, NSW, Australia (1983)Google Scholar
  16. 16.
    Moore, J.: description and operating performance of a parallel-rail electric-arc system with helium driver gas for the Langley 6-inch expansion tube. NASA TM X-3448, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1976)Google Scholar
  17. 17.
    Creel, T.: Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver. NASA TN D-7070, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1972)Google Scholar
  18. 18.
    Miller, C.G., Jones, J.: Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver. NASA TN-8099, NASA Langley Research Center, Langley, VA, USA (1975)Google Scholar
  19. 19.
    Miller, C., Moore, J.: Flow-establishment times for blunt bodies in an expansion tube. AIAA J. 13(12), 1676–1678 (1975). doi: 10.2514/3.7048 CrossRefGoogle Scholar
  20. 20.
    Shinn, J.: Comparison of predicted and experimental real-gas pressure distributions on space shuttle orbiter nose for shuttle entry air data system. NASA TP-1627, NASA Langley Research Center, Langley, VA, USA (1980)Google Scholar
  21. 21.
    Tamagno, J., Bakos, R., Pulsonetti, M., Erdos, J.: Hypervelocity real gas capabilities of GASL’s expansion tube (HYPULSE) facility. In: 16th AIAA Aerodynamic Ground Testing Conference, Seattle, WA, USA, June 18–20, AIAA Paper 1990-1390 (1990). doi: 10.2514/6.1990-1390
  22. 22.
    Stringer, I.: “TQ” free piston expansion tube-design and operation. Report 4/1989, Department of Mechanical Engineering, The University of Queensland, Brisbane, Australia (1989)Google Scholar
  23. 23.
    Paull, A., Stalker, R.J., Stringer, I.: Experiments on an expansion tube with a free piston driver. In: 15th AIAA Aerodynamic Testing Conference, San Diego, CA, USA, May 18–20, AIAA Paper 1988-2018 (1988). doi: 10.2514/6.1988-2018
  24. 24.
    Paull, A., Stalker, R.J.: Test flow disturbances in an expansion tube. J. Fluid Mech. 245(1), 493–521 (1992). doi: 10.1017/S0022112092000569 CrossRefGoogle Scholar
  25. 25.
    Gildfind, D.E., Morgan, R.G., Jacobs, P.A.: Expansion tubes in Australia. In: Igra, O., Seiler, F. (eds.) Experimental Methods of Shock Wave Research. Shock Wave Science and Technology Reference Library, vol. 9, pp. 399–431. Springer, Cham (2016). doi: 10.1007/978-3-319-23745-9_13
  26. 26.
    Sasoh, A., Ohnishi, Y., Ramjaun, D., Takayama, K., Otsu, H., Abe, T.: Effective test time evaluation in high-enthalpy expansion tube. AIAA J. 39(11), 2141–2147 (2001). doi: 10.2514/2.1210 CrossRefGoogle Scholar
  27. 27.
    Ben-Yakar, A., Hanson, R.K.: Characterization of expansion tube flows for hypervelocity combustion studies. J. Propuls. Power 18(4), 943–952 (2002). doi: 10.2514/2.6021 CrossRefGoogle Scholar
  28. 28.
    Dufrene, A., Sharma, M., Austin, J.M.: Design and characterization of a hypervelocity expansion tube facility. J. Propuls. Power 23(6), 1185–1193 (2007). doi: 10.2514/1.30349 CrossRefGoogle Scholar
  29. 29.
    Dufrene, A., MacLean, M., Parker, R., Wadhams, T., Holden, M.: Characterization of the new LENS expansion tunnel facility. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, January 4–7, AIAA Paper 2010-1564 (2010). doi: 10.2514/6.2010-1564
  30. 30.
    Abul-Huda, Y., Gamba, M.: Design and characterization of the Michigan hypersonic expansion tube facility (MHExT). In: 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, USA, January 5–9, AIAA Paper 2015-1785 (2015). doi: 10.2514/6.2015-1785
  31. 31.
    Jiang, Z., Wu, B., Gao, Y., Zhao, W., Hu, Z.: Development of the detonation-driven expansion tube for orbital speed experiments. Sci. China Technol. Sci. 58(4), 695–700 (2015). doi: 10.1007/s11431-014-5756-1 CrossRefGoogle Scholar
  32. 32.
    McGilvray, M., Doherty, L., Morgan, R., Gildfind, D.: T6: The Oxford University Stalker tunnel. In: 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, AIAA Paper 2015-3545 (2015). doi: 10.2514/6.2015-3545
  33. 33.
    Neely, A., Morgan, R.: The superorbital expansion tube concept, experiment and analysis. Aeronaut. J. 98, 97–105 (1994). doi: 10.1017/S0001924000050107 CrossRefGoogle Scholar
  34. 34.
    Jacobs, P.: L1d: A computer program for the simulation of transient-flow facilities. Report 1/99, Department of Mechanical Engineering, University of Queensland, Australia (1999)Google Scholar
  35. 35.
    Jacobs, P.: Quasi-one-dimensional modeling of a free-piston shock tunnel. AIAA J. 32, 137–145 (1994). doi: 10.2514/3.11961 CrossRefGoogle Scholar
  36. 36.
    Mirels, H.: Test time in low-pressure shock tubes. Phys. Fluids 6, 1201–1214 (1963). doi: 10.1063/1.1706887 CrossRefMATHGoogle Scholar
  37. 37.
    Mirels, H.: Shock tube test time limitation due to turbulent-wall boundary layer. AIAA J. 2, 84–93 (1964). doi: 10.2514/3.2218 CrossRefMATHGoogle Scholar
  38. 38.
    Mirels, H., Mullen, J.F.: Small perturbation theory for shock-tube attenuation and nonuniformity. Phys. Fluids 7(8), 1208–1218 (1964). doi: 10.1063/1.1711363 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Jacobs, P., Gollan, R., Potter, D., Zander, F., Gildfind, D., Blyton, P., Chan, W., Doherty, L.: Estimation of high-enthalpy flow conditions for simple shock and expansion processes using the ESTCj program and library. Mechanical Engineering Report 2011/02, Department of Mechanical Engineering, University of Queensland, Australia (2011)Google Scholar
  40. 40.
    James, C., Gildfind, D., Morgan, R., Jacobs, P., Zander, F.: Designing and simulating high enthalpy expansion tube conditions. In: 2013 Asia-Pacific International Symposium on Aerospace Technology, Takamatsu, Japan (2013)Google Scholar
  41. 41.
    Gordon, G., McBride, B.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis. NASA-RP-1311, NASA Lewis Research Center, Cleveland (1994)Google Scholar
  42. 42.
    McBride, B., Gordon, G.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description. NASA-RP-1311, NASA Lewis Research Center, Cleveland (1996)Google Scholar
  43. 43.
    Jacobs, P., Gollan, R.: The compressible-flow CFD project. http://www.mech.uq.edu.au/cfcfd/ (2017). Accessed 12 May 2017
  44. 44.
    Morgan, R., McIntyre, T., Buttsworth, D., Jacobs, P., Potter, D., Brandis, A., Gollan, R., Jacobs, C., Capra, B., McGilvray, M., Eichmann, T.: Impulse facilities for the simulation of hypersonic radiating flows. In: 38th AIAA Fluid Dynamics Conference and Exhibit, Seattle, WA, USA, June 23–26, AIAA Paper 2008-4270 (2008). doi: 10.2514/6.2008-4270
  45. 45.
    Gildfind, D., James, C., Toniato, P., Morgan, R.: Performance considerations for expansion tube operation with a shock-heated secondary driver. J. Fluid Mech. 777, 364–407 (2015). doi: 10.1017/jfm.2015.349 CrossRefGoogle Scholar
  46. 46.
    Fahy, E., Gollan, R., Buttsworth, D., Jacobs, P., Morgan, R.: Experimental and computational fluid dynamics studies of superorbital earth re-entry. In: 46th AIAA Thermophysics Conference, Washington, DC, USA, June 13–17, AIAA Paper 2016-3532 (2016). doi: 10.2514/6.2016-3532
  47. 47.
    Sheikh, U., Morgan, R., McIntyre, T.: Vacuum ultraviolet spectral measurements for superorbital earth entry in X2 expansion tube. AIAA J. 53(12), 3589–3602 (2015). doi: 10.2514/1.J054027 CrossRefGoogle Scholar
  48. 48.
    Wei, H., Morgan, R., McIntyre, T.: Experimental and numerical investigation of air radiation in superorbital expanding flow. In: 47th AIAA Thermophysics Conference, Denver, CO, USA, June 5–9, AIAA Paper 2017-453 (2017). doi: 10.2514/6.2017-453
  49. 49.
    Eichmann, T.: Radiation measurements in a simulated mars atmosphere. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2012)Google Scholar
  50. 50.
    Gu, S., Morgan, R., McIntyre, T.: Study of afterbody radiation during mars entry in an expansion tube. In: AIAA SciTech 2017 Conference, Grapevine, TX, USA, January 9–13, AIAA Paper 2017-0212 (2017). doi: 10.2514/6.2017-0212
  51. 51.
    Porat, H.: Measurement of radiative heat transfer in simulated Titan and Mars atmospheres in expansion tubes. Ph.D. Thesis, The University of Queensland, St. Lucia, Australia (2016). doi: 10.14264/uql.2016.127
  52. 52.
    de Crombrugghe de Looringhe, G.: On binary scaling and ground-to-flight extrapolation in high-enthalpy facilities. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2017). doi: 10.14264/uql.2017.456
  53. 53.
    James, C., Gildfind, D., Morgan, R., Lewis, S., McIntyre, T.: Experimentally simulating gas giant entry in an expansion tube. In: 21th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Xiamen, China, March 6–9, AIAA Paper 2017-2152 (2017). doi: 10.2514/6.2017-2152
  54. 54.
    Zander, F., Morgan, R., Sheikh, U., Buttsworth, D., Teakle, P.: Hot-wall reentry testing in hypersonic impulse facilities. AIAA J. 51, 476–484 (2013). doi: 10.2514/1.J051867 CrossRefGoogle Scholar
  55. 55.
    Lewis, S.W., Morgan, R.G., McIntyre, T.J., Alba, C.R., Greendyke, R.G.: Expansion tunnel experiments of earth reentry flow with surface ablation. J. Spacecr. Rockets 53, 887–899 (2016). doi: 10.2514/1.A33267 CrossRefGoogle Scholar
  56. 56.
    Lewis, S.W., James, C., Morgan, R.G., McIntyre, T.J., Alba, C.R., Greendyke, R.G.: Carbon ablative shock-layer radiation with high surface temperatures. J. Thermophys. Heat Transf. 31, 193–204 (2017). doi: 10.2514/1.T4902 CrossRefGoogle Scholar
  57. 57.
    Lewis, S.W., James, C., Ravichandran, R., Morgan, R.G., McIntyre, T.J.: Carbon ablation in hypervelocity air and nitrogen shock layers. J. Thermophys. Heat Transf. (2017, under review)Google Scholar
  58. 58.
    Stalker, R.: Use of argon in a free piston shock tunnel. In: AIAA Plasmadynamics Conference, Monterey, CA, USA, March 2–4, AIAA Paper 1966-169 (1966). doi: 10.2514/6.1966-169
  59. 59.
    Stalker, R.: A study of the free-piston shock tunnel. AIAA J. 5(12), 2160–2165 (1967). doi: 10.2514/3.4402 CrossRefGoogle Scholar
  60. 60.
    Itoh, K., Ueda, S., Komuro, T., Sato, K., Takahashi, M., Miyajima, H., Tanno, H., Muramoto, H.: Improvement of a free piston driver for a high-enthalpy shock tunnel. Shock Waves 8, 215–233 (1998). doi: 10.1007/s001930050115 CrossRefGoogle Scholar
  61. 61.
    Tanno, H., Itoh, K., Komuro, T., Sato, K.: Experimental study on the tuned operation of a free piston driver. Shock Waves 10(1), 1–7 (2000). doi: 10.1007/s001930050174 CrossRefGoogle Scholar
  62. 62.
    Gildfind, D., Morgan, R., McGilvray, M., Jacobs, P., Stalker, R., Eichmann, T.: Free-piston driver optimisation for simulation of high mach number scramjet flow conditions. Shock Waves 21, 559–572 (2011). doi: 10.1007/s00193-011-0336-9 CrossRefGoogle Scholar
  63. 63.
    Gildfind, D.: Development of high total pressure scramjet flows conditions using the X2 expansion tube. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2012)Google Scholar
  64. 64.
    Gildfind, D., James, C., Morgan, R.: Free-piston driver performance characterisation using experimental shock speeds through helium. Shock Waves 25, 169–176 (2015). doi: 10.1007/s00193-015-0553-8 CrossRefGoogle Scholar
  65. 65.
    Morgan, R., Stalker, R.: Double diaphragm driven free piston expansion tube. In: The 18th International Symposium on Shock Waves, Sendai, Japan, July 21–26 (1991)Google Scholar
  66. 66.
    Kendall, M., Morgan, R., Petrie-Repar, P.: A study of free piston double diaphragm drivers for expansion tubes. In: 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, Jan 6–10, AIAA Paper 1997-985 (1997). doi: 10.2514/6.1997-985
  67. 67.
    Roberts, G., Kendall, M., Morgan, R.: Shock diaphragm interaction in expansion tubes. In: Proceedings of the 21st International Symposium on Shock Waves, Great Keppel Island, QLD, Australia, July 20–25 (1997)Google Scholar
  68. 68.
    Bakos, R.J., Morgan, R.G.: Chemical recombination in an expansion tube. AIAA J. 32(6), 1316–1319 (1994). doi: 10.2514/3.12135 CrossRefGoogle Scholar
  69. 69.
    Petrie-Repar, P.: Numerical simulation of diaphragm rupture. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (1997)Google Scholar
  70. 70.
    Wegener, M., Sutcliffe, M., Morgan, R.: Optical study of a light diaphragm rupture process in an expansion tube. Shock Waves 10(3), 167–178 (2000). doi: 10.1007/s001930050003 CrossRefGoogle Scholar
  71. 71.
    Furukawa, T., Aochi, T., Sasoh, A.: Expansion tube operation with thin secondary diaphragm. AIAA J. 45(1), 214–217 (2007). doi: 10.2514/1.23846 CrossRefGoogle Scholar
  72. 72.
    Haggard, K.: Free-stream temperature, density, and pressure measurements in an expansion tube flows. NASA-TN-D-7273, Nasa Langley Research Center, Langley, VA, USA (1973)Google Scholar
  73. 73.
    Wilson, G.: Time-dependent quasi-one-dimensional simulations of high enthalpy pulse facilities. In: Fourth AIAA International Aerospace Planes Conference, Orlando, FL, USA, December 1–4, AIAA Paper 1992-5096 (1992). doi: 10.2514/6.1992-5096
  74. 74.
    Roberts, G., Morgan, R., Stalker, R.: The effect of diaphragm inertia on expansion tubes. In: The 13th International Symposium on Shock Waves, Marseille, France, July 26–30 (1993)Google Scholar
  75. 75.
    Scott, M.: Development and modelling of expansion tubes. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2006)Google Scholar
  76. 76.
    Taylor, G.I., Maccoll, J.W.: The air pressure on a cone moving at high speeds. I. Proc. R. Soc. Lond. Ser. A 139(838), 278–297 (1933). doi: 10.1098/rspa.1933.0017 CrossRefMATHGoogle Scholar
  77. 77.
    Taylor, G.I., Maccoll, J.W.: The air pressure on a cone moving at high speeds. II. Proc. R. Soc. Lond. Ser. A 139(838), 298–311 (1933). doi: 10.1098/rspa.1933.0018 CrossRefMATHGoogle Scholar
  78. 78.
    Gildfind, D.E., Morgan, R.G., Jacobs, P.A., McGilvray, M.: Production of high-Mach-number scramjet flow conditions in an expansion tube. AIAA J. 52(1), 162–177 (2014). doi: 10.2514/1.J052383 CrossRefGoogle Scholar
  79. 79.
    Gu, S.: Personal communication (2015)Google Scholar
  80. 80.
    Jacobs, P., Gollan, R.: Pitot. http://cfcfd.mechmining.uq.edu.au/pitot.html (2017). Accessed 12 May 2017
  81. 81.
    PCB Piezotronics, Inc.: Model 112A22 High Resolution ICP Pressure Probe, 50 psi, 100 mV/psi, \(0.218^{\prime \prime }\) Dia. Installation and Operating Manual. PCB Piezotronics, Inc., Depew (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. M. James
    • 1
  • D. E. Gildfind
    • 1
  • S. W. Lewis
    • 1
  • R. G. Morgan
    • 1
  • F. Zander
    • 1
  1. 1.The University of QueenslandSt LuciaAustralia

Personalised recommendations