Shock Waves

, Volume 28, Issue 2, pp 217–225 | Cite as

A comparison of methods for detonation pressure measurement

  • J. Pachman
  • M. Künzel
  • O. Němec
  • J. Majzlík
Original Article


Detonation pressure is an important parameter describing the process of detonation. The paper compares three methods for determination of detonation pressure on the same explosive charge design. Pressed RDX/wax pellets with a density of \(1.66 \hbox { g cm}^{-3}\) were used as test samples. The following methods were used: flyer plate method, impedance window method, and detonation electric effect. Photonic Doppler velocimetry was used for particle velocity measurements in the first two cases. The outputs of the three methods are compared to the literature values and to thermochemical calculation predictions.


Detonation pressure Detonation electric effect Photonic Doppler velocimetry Impedance matching 



Financial support for this work from the Technology Agency of the Czech Republic Project TA02010923 is gratefully acknowledged.


  1. 1.
    McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N., Carter, W.J.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, p. 293. Academic Press, New York (1970)CrossRefGoogle Scholar
  2. 2.
    Rice, M.H., McQueen, R.G., Walsh, J.M.: Compression of solids by strong shock waves. Solid State Phys. 6, 1–63 (1958). doi: 10.1016/S0081-1947(08)60724-9 CrossRefGoogle Scholar
  3. 3.
    Walsh, J.M., Christian, R.H.: Equation of state of metals from shock wave measurements. Phys. Rev. 97, 1544 (1955). doi: 10.1103/PhysRev.97.1544 CrossRefGoogle Scholar
  4. 4.
    Walsh, J.M., Rice, M.H., McQueen, R.G., Yarger, F.L.: Shock-wave compressions of twenty-seven metals. Equations of state of metals. Phys. Rev. 108, 196 (1957). doi: 10.1103/PhysRev.108.196 CrossRefGoogle Scholar
  5. 5.
    Ahrens, T.J.: MateriaI strength effect in the shock compression of alumina. J. Appl. Phys. 39, 4610 (1968). doi: 10.1063/1.1655810 CrossRefGoogle Scholar
  6. 6.
    Duff, R.E., Houston, E.: Measurement of the Chapman–Jouguet pressure and reaction zone length in a detonating high explosive. J. Chem. Phys. 23(7), 1268–1273 (1955). doi: 10.1063/1.1742255 CrossRefGoogle Scholar
  7. 7.
    Goranson, R.W.: A Method for Determining Equations of State and Reaction Zones in Detonation of High Explosives, and Its Application to Pentolite, Composition B, Baratol and TNT. Report LA-487. Los Alamos, USA (1946)Google Scholar
  8. 8.
    Deal, W.E.: Measurement of Chapman–Jouguet pressure for explosives. J. Chem. Phys. 27(1), 796–800 (1957). doi: 10.1063/1.1743831 CrossRefGoogle Scholar
  9. 9.
    Davis, W.C., Craig, B.G.: Smear camera technique for free-surface velocity measurement. Rev. Sci. Instrum. 32, 579 (1961). doi: 10.1063/1.1717443 CrossRefGoogle Scholar
  10. 10.
    Fedorov, A.V., Mikhailov, A.L., Antonyuk, L.K., Nazarov, D.V., Finyushin, S.A.: Determination of chemical reaction zone parameters, Neumann peak parameters, and the state in the Chapman–Jouguet plane in homogeneous and heterogeneous high explosives. Combust. Explos. Shock Waves (Engl. Transl.) 48(3), 302–308 (2012). doi: 10.1134/S0010508212030070 CrossRefGoogle Scholar
  11. 11.
    Bouyer, V., Doucen, M., Decaris, L.: Experimental measurements of the detonation wave profile in a TATB based explosive. EPJ Web Conf. 10, 00030 (2010). doi: 10.1051/epjconf/20101000030 CrossRefGoogle Scholar
  12. 12.
    Lorenz, K.T., Lee, E.L., Chambers, R.: A simple and rapid evaluation of explosive performance—the disc acceleration experiment. Propellants Explos. Pyrotech. 40(1), 95–108 (2015). doi: 10.1002/prep.201400081 CrossRefGoogle Scholar
  13. 13.
    Sheffield, S.A., Blomquist, D.D.: Subnanosecond measurements of detonation fronts in solid high explosives. J. Chem. Phys. 80(8), 3831–3844 (1984). doi: 10.1063/1.447164 CrossRefGoogle Scholar
  14. 14.
    Utkin, A.V., Mochalova, V.M., Logvinenko, A.A.: Effect of diethylenetriamine on the structure of detonation waves in nitromethane. Combust. Explos. Shock Waves (Engl. Transl.) 49(4), 478–483 (2013). doi: 10.1134/S0010508213040114 CrossRefGoogle Scholar
  15. 15.
    Yunoshev, A.S., Plastinin, A.V., Silvestrov, V.V.: Effect of the density of an emulsion explosive on the reaction zone width. Combust. Explos. Shock Waves (Engl. Transl.) 48(3), 319–327 (2012). doi: 10.1134/S0010508212030094 CrossRefGoogle Scholar
  16. 16.
    Gustavsen, R.L., Bartram, B.D., Sanchez, N.J.: Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry. AIP Conf. Proc. 1195, 253 (2010). doi: 10.1063/1.3295117 Google Scholar
  17. 17.
    Fedorov, A.V.: Detonation wave structure in liquid homogeneous, solid heterogeneous and agatized HE. Paper presented at the Twelfth International Symposium on Detonation, San Diego, California, USA, 11–16 Aug (2002)Google Scholar
  18. 18.
    Cook, M.A., Keyes, R.T., Ursenbach, W.O.: Measurements of detonation pressure. J. Appl. Phys. 33(12), 3413–3421 (1962). doi: 10.1063/1.1702422 CrossRefGoogle Scholar
  19. 19.
    Held, M.: Determination of the Chapman–Jouguet pressure of a high explosive from one single test. Def. Sci. J. 37(1), 1–9 (1987). doi: 10.14429/dsj.37.5886 CrossRefGoogle Scholar
  20. 20.
    Hayes, B.: The detonation electric effect. J. Appl. Phys. 38(2), 507–511 (1967). doi: 10.1063/1.1709365 CrossRefGoogle Scholar
  21. 21.
    Green, L.G., Lee, E.L.: Detonation pressure measurements on PETN. Paper presented at the 13th International Detonation Symposium, Norfolk, Virginia, USA, 23–28 July (2006)Google Scholar
  22. 22.
    Prinse, W.C., Esveld, L., Oostdam, R., Roojien, M., Bouma, R.: Fibre-optical techniques for measuring various properties of shock waves. Paper presented at the 23rd International Congress on High-Speed Photography and Photonics, Moscow, Russia, 20 Sept (1998). doi: 10.1117/12.350497
  23. 23.
    Krupka, M.: OPTIMEX—scientific report of the progress and results obtained in 2015. In: Technology Agency of Czech Republic, Hrochuv Tynec (2015) (in Czech) Google Scholar
  24. 24.
    Krupka, M., Pachman, J., Selesovsky, J., Marsalek, R., Pospisil, M.: OPTIMEX—fiber optical system for EM performance. Paper presented at the Greener and Safer Energetic and Ballistic Systems (GSEBS), Bucharest, Romania, 22–23 May (2016)Google Scholar
  25. 25.
    Loboiko, B.G., Lubyatinsky, S.N.: Reaction zones of detonating solid explosives. Combust. Explos. Shock Waves (Engl. Transl.) 36(6), 716–733 (2000). doi: 10.1023/A:1002898505288 CrossRefGoogle Scholar
  26. 26.
    Cowperthwaite, M., Rosenberg, J.T.: Lagrange gage studies in ideal and non-ideal explosives. Paper presented at the Seventh Symposium (International) on Detonation, Annapolis, Maryland, USA, 16–19 June (1981)Google Scholar
  27. 27.
    Rivard, W.C., Venable, D., Fickett, W., Davis, W.C.: Flash X-ray observation of marked mass points in explosive products. Paper presented at the Fifth International Symposium on Detonation, Pasadena, California, USA (1970)Google Scholar
  28. 28.
    Vantine, H., Chan, J., Erickson, L., Janzen, J., Weingart, R., Lee, R.: Precision stress measurements in severe shockwave environments with low-impedance manganin gauges. Rev. Sci. Instrum. 51, 116–122 (1980). doi: 10.1063/1.1136038 CrossRefGoogle Scholar
  29. 29.
    Watson, R.W.: Gauge for determining shock pressures. Rev. Sci. Instrum. 38, 978–980 (1967). doi: 10.1063/1.1720946 CrossRefGoogle Scholar
  30. 30.
    Pachman, J., Künzel, M., Němec, O., Bland, S.: Characterization of Al plate acceleration by low power photonic Doppler velocimetry (PDV). Paper presented at the 40th International Pyrotechnics Society Seminar, Colorado Springs, USA, 13–18 July (2014)Google Scholar
  31. 31.
    Künzel, M., Matyáš, R., Vodochodský, O., Pachman, J.: Explosive properties of melt cast erythritol tetranitrate. Cent. Eur. J. Energy Mater. (2017). doi: 10.22211/cejem/68471 Google Scholar
  32. 32.
    Strand, T., Goosman, D.R., Martinez, C., Whitworth, T.L., Kuhlow, W.W.: Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 77, 083108 (2006). doi: 10.1063/1.2336749 CrossRefGoogle Scholar
  33. 33.
    Strand, T., Kuhlow, B.: Resolution capabilities of the Fourier transform method for PDV. Paper presented at the Photonic Doppler Velocimetry Workshop, Livermore, California, USA, 20–21 July (2006)Google Scholar
  34. 34.
    Sućeska, M.: Explo5 Version 6.03/2016 User’s Guide. OZM Research (2016)Google Scholar
  35. 35.
    Brown, W.B.: Analytical representation of the excess thermodynamic equation of state for classical fluid mixtures of molecules interacting with \(\alpha \)-exponential-six pair potentials up to high densities. J. Chem. Phys. 87(1), 566–577 (1987). doi: 10.1063/1.453605 CrossRefGoogle Scholar
  36. 36.
    Craig, B.G.: Measurement of detonation-front structure in condensed-phase explosives. Paper presented at the Tenth Symposium (International) on Combustion, Cambridge, UK (1965). doi: 10.1016/S0082-0784(65)80230-2
  37. 37.
    Pachman, J., Künzel, M., Kubát, K., Selesovsky, J., Maršálek, R., Pospíšil, M., Kubíček, M., Prokeš, A.: OPTIMEX: Measuring of detonation front curvature with passive fiber optical system. Cent. Eur. J. Energy Mater. 13(4), 808–820 (2016). doi: 10.22211/cejem/62776 Google Scholar
  38. 38.
    Choudhury, D., Gupta, Y.M.: Shock compression and unloading response of 1050 aluminum to 70 GPa. AIP Conf. Proc. 1426, 755 (2012). doi: 10.1063/1.3686388 CrossRefGoogle Scholar
  39. 39.
    Chapman, D.J., Eakins, D.E., Williamson, D.M., Proud, W.G.: Index of refraction measurements and window corrections for PMMA under shock compression. AIP Conf. Proc. 1426, 442 (2012). doi: 10.1063/1.3686313 CrossRefGoogle Scholar
  40. 40.
    Gustavsen, R.L., Bartram, B.D., Sanchez, N.: Shock initiation measurements using multiple samples & instrumented with PDV. Paper presented at the Photonic Doppler Velocimetry Workshop, Austin, Texas, USA, 5–6 Nov (2009)Google Scholar
  41. 41.
    Cooper, P.W.: Explosives Engineering. Wiley-WCH Inc, New York (1996)Google Scholar
  42. 42.
    Dolan, D.H.: Accuracy and precision in photonic Doppler velocimetry. Rev. Sci. Instrum. 81(053905), 1–7 (2010). doi: 10.1063/1.3429257 Google Scholar
  43. 43.
    Braithwaite, C.H., Pachman, J., Majzlik, J., Williamson, D.M.: Recalibration of the large scale gap-test to a stress scale. Propellants Explos. Pyrotech. 37(5), 614–620 (2012). doi: 10.1002/prep.201200006 CrossRefGoogle Scholar
  44. 44.
    Coleburn, N.L.: Chapman–Jouguet pressures of several pure and mixed explosives. NOLTR 64-58, United States Naval Ordnance Laboratory, Maryland, USA, DTIC Accession Number AD0603540 (1964)Google Scholar
  45. 45.
    Majzlík, J., Dusík, V.: DETPAR—The Catalogue of Detonation Parameters, 1st edn. University of Pardubice, Pardubice (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Energetic Materials, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzechia
  2. 2.OZM Research, s.r.o.Hrochuv TynecCzechia

Personalised recommendations