Shock Waves

, Volume 28, Issue 2, pp 335–348 | Cite as

Two-dimensional computational modeling of high-speed transient flow in gun tunnel

  • A. M. Mohsen
  • M. Z. Yusoff
  • H. Hasini
  • A. Al-Falahi
Original Article


In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air–air, helium–air, air–nitrogen, and air–\(\hbox {CO}_{2}\) were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium–air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the \(\hbox {CO}_{2}\) test gas.


Gun tunnel Shock wave Mach number CFD 



The authors would like to sincerely thank the Ministry of Higher Education (MOHE) of Malaysia for the provision of a Grant with code No. 20150213FRGS to support this work.


  1. 1.
    Buttsworth, D., Jones, T.: High bandwidth stagnation temperature measurements in a Mach 6 gun tunnel flow. Exp. Therm. Fluid Sci. 27, 177–186 (2003). doi: 10.1016/S0894-1777(02)00281-9 CrossRefGoogle Scholar
  2. 2.
    Buttsworth, D., Jacobs, P., Jones, T.: Simulation of Oxford University Gun Tunnel performance using a quasi-one-dimensional model. Shock Waves 11, 377–383 (2002). doi: 10.1007/s001930200121 CrossRefMATHGoogle Scholar
  3. 3.
    Stalker, R.: An approximate theory of gun tunnel behavior. J. Fluid Mech. 22, 657–670 (1965). doi: 10.1017/S0022112065001040 CrossRefGoogle Scholar
  4. 4.
    Edney, B.E.: Temperature measurements in a hypersonic gun tunnel using heat transfer methods. J. Fluid Mech. 27(3), 503–512 (1967). doi: 10.1017/S0022112067000503 CrossRefGoogle Scholar
  5. 5.
    Mallinson, S., Hillier, R., Jackson, A., Kirk, D.C., Soltani, S., Zanchetta, M.: Gun tunnel flow calibration: defining input conditions for hypersonic flow computations. Shock Waves 10, 313–322 (2000). doi: 10.1007/s001930000064 CrossRefGoogle Scholar
  6. 6.
    Sheng, Y., Sislian, J.P., Liu, J.: A computational technique for high enthalpy shock tube and shock tunnel flow simulation. Shock Waves 8, 203–214 (1998). doi: 10.1007/s001930050114 CrossRefMATHGoogle Scholar
  7. 7.
    Jacobs, P.: Quasi-one-dimensional modeling of a free-piston shock tunnel. AIAA J. 32(1), 137–145 (1994). doi: 10.2514/3.11961 CrossRefGoogle Scholar
  8. 8.
    Misawa, T., Ogawa, H., Fujiwara, T.: Numerical analysis of viscous, nonequilibrium, hypervelocity flow induced by a free piston shock tunnel. In: 21st International Symposium on Shock Waves, Great Keppel Island (1997)Google Scholar
  9. 9.
    Al-Falahi, A., Yusoff, M., Yusaf, T.: Numerical simulation of inviscid transient flows in shock tube and its validations. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 2(7), 1–11 (2008)Google Scholar
  10. 10.
    Al-Falahi, A., Yusoff, M., Yusaf, T.: Numerical and experimental study to evaluate the performance of Universiti Tenaga Nasional Short Duration Hypersonic Test Facility. In: 16th Australasian Fluid Mechanics Conference (AFMC), School of Engineering, The University of Queensland, Australia (2007)Google Scholar
  11. 11.
    Diyar, I.A., Al-Falahi, A., Yusoff, M.Z., Shuaib, N.H.: Two dimensional numerical investigations on the velocity profile in a shock tunnel. Eur. J. Sci. Res. 45(3), 458–469 (2008)Google Scholar
  12. 12.
    Mohsen, A.M., Yusoff, M.Z., Al-Falahi, A., Shuaib, N.H.: The effects of area contraction on shock wave strength and peak pressure in shock tube. Int. J. Automot. Mech. Eng. (IJAME) 5, 587–596 (2012). doi: 10.15282/ijame.5.2012.5.0046 CrossRefGoogle Scholar
  13. 13.
    Mohsen, A.M., Yusoff, M.Z., Al-Falahi, A.: Area contraction effect on shock tube performance, numerical and experimental study. ARPN J. Eng. Appl. Sci. 10(20), 9614–9620 (2015)Google Scholar
  14. 14.
    Andreotti, R., Colombo, M., Guardone, A., Martinelli, P., Riganti, G., di Prisco, M.: Performance of a shock tube facility for impact response of structures. Int. J. Non-Linear Mech. 72, 53–66 (2015). doi: 10.1016/j.ijnonlinmec.2015.02.010
  15. 15.
    Kotov, D., Yee, H., Panesi, M., Prabhu, D., Wray, A.: Computational challenges for simulations related to the NASA electric arc shock tube (EAST) experiments. J. Comput. Phys. 269, 215–233 (2014). doi: 10.1016/ MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mundt, C., Boyce, R., Jacobs, P., Hannemann, K.: Validation study of numerical simulations by comparison to measurements in piston-driven shock-tunnels. Aerosp. Sci. Technol. 11(2), 100–109 (2007). doi: 10.1016/j.ast.2006.12.002 CrossRefGoogle Scholar
  17. 17.
    Chen, S., Sun, Q.: Numerical study of shock/boundary layer interaction of chemically reacting flow in shock tube. Procedia Eng. 126, 617–621 (2015). doi: 10.1016/j.proeng.2015.11.249 CrossRefGoogle Scholar
  18. 18.
    Curtis, J.: An Accelerated Reservoir Light-Gas Gun. NASA TN D-1144, National Aeronautics and Space Adminstration, Washington, DC (1962)Google Scholar
  19. 19.
    Liou, M.S., Wada, Y.: An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J. Sci. Comput. 18, 633–657 (1997). doi: 10.1137/S1064827595287626 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Warming, R.F., Beam, R.M.: Upwind second order difference schemes and applications in aerodynamic flows. AIAA J. 14(9), 1241–1249 (1976). doi: 10.2514/3.61457 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    van Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s sequel. J. Comput. Phys. 32, 101–136 (1979). doi: 10.1016/0021-9991(79)90145-1 CrossRefMATHGoogle Scholar
  22. 22.
    Lamnaouer, M.: Numerical Modeling of the Shock Tube Flow Fields Before and During Ignition Delay Time Experiments at Practical Conditions. PhD Thesis, University of Central Florida Orlando, Florida (2010)Google Scholar
  23. 23.
    Davis, L.: On the equilibrium piston technique in gun tunnels. In: Proceedings of Von Karman Institute for Fluid Dynamics VKI Short Course on Advance, vol. 2, pp. 1–16. Shock Tube Technology (1969)Google Scholar
  24. 24.
    Ahmadi, A., Pishevar, A., Nili, M.: Effect of piston and its weight on the performance of a gun tunnel via computational fluid dynamics. Int. J. Aerosp. Mech. Eng. 3(2), 387–398 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • A. M. Mohsen
    • 1
  • M. Z. Yusoff
    • 1
  • H. Hasini
    • 1
  • A. Al-Falahi
    • 2
  1. 1.Centre for Advanced Computational Engineering, College of EngineeringUniversiti Tenaga NasionalKajangMalaysia
  2. 2.Sheridan CollegeBramptonCanada

Personalised recommendations