Shock Waves

, Volume 28, Issue 2, pp 401–416 | Cite as

Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

Original Article

Abstract

Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the \(A{-}M\) rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine–Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model’s approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific \(A{-}M\) relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

Keywords

Shock wave Geometrical shock dynamics Kinematic model 

Notes

Acknowledgements

Part of this work has been possible thanks to the LETMA collaboration: a contractual research laboratory between CEA, CNRS, École Centrale Lyon, C-Innov, and Université Pierre et Marie Curie. O. Gainville is acknowledged for valuable discussions. We also thank an anonymous reviewer who helped us to improve the quality of this paper.

References

  1. 1.
    Whitham, G.B.: A new approach to problems of shock dynamics. Part I: Two-dimensional problems. J. Fluid Mech. 2(2), 145–171 (1957). doi: 10.1017/S002211205700004X MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Whitham, G.B.: A new approach to problems of shock dynamics. Part II: Three-dimensional problems. J. Fluid Mech. 5(3), 369–386 (1959). doi: 10.1017/S002211205900026X CrossRefMATHGoogle Scholar
  3. 3.
    Whitham, G.B.: Chap. 8: Shock dynamics. In: Linear and Nonlinear Waves, 3rd edn. Wiley (1999). doi: 10.1002/9781118032954
  4. 4.
    Chester, W.: The quasi-cylindrical shock tube. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(371), 1293–1301 (1954). doi: 10.1080/14786441208561138 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chisnell, R.F.: The motion of shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2(3), 286–298 (1957). doi: 10.1017/S0022112057000130 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Whitham, G.B.: On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4(04), 337–360 (1958). doi: 10.1017/S0022112058000495 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Whitham, G.B.: A note on shock dynamics relative to a moving frame. J. Fluid Mech. 31(03), 449–453 (1968). doi: 10.1017/S002211206800025X CrossRefMATHGoogle Scholar
  8. 8.
    Chester, W.: The propagation of shock wave along ducts of varying cross section. Adv. Appl. Mech. 6, 119–152 (1960). doi: 10.1016/S0065-2156(08)70111-X MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Collins, R., Chen, H.T.: Motion of a shock wave through a nonuniform fluid. In: Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, pp. 264–269. Springer (1971). doi: 10.1007/3-540-05407-3_39
  10. 10.
    Catherasoo, C.J., Sturtevant, B.: Shock dynamics in non-uniform media. J. Fluid Mech. 127, 539–561 (1983). doi: 10.1017/S0022112083002876 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Han, Z.-Y., Yin, X.-Z.: Chap. 3.7: Geometrical shock dynamics. In: Handbook of Shock Waves, Vol. 1, pp. 485–550. Academic Press, Cambridge (2000). doi: 10.1016/B978-012086430-0/50011-7
  12. 12.
    Henshaw, W.D., Smyth, N.F., Schwendeman, D.W.: Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986). doi: 10.1017/S0022112086001568 CrossRefMATHGoogle Scholar
  13. 13.
    Schwendeman, D.W.: A numerical scheme for shock propagation in three dimensions. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 416, pp. 179–198 (1988). doi: 10.1098/rspa.1988.0033
  14. 14.
    Schwendeman, D.W.: A new numerical method for shock wave propagation based on geometrical shock dynamics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 441, pp. 331–341 (1993). doi: 10.1098/rspa.1993.0064
  15. 15.
    Schwendeman, D.W.: A higher-order Godunov method for the hyperbolic equations modelling shock dynamics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 455, pp. 1215–1233 (1999). doi: 10.1098/rspa.1999.0356
  16. 16.
    Aslam, T.D., Bdzil, J.B., Stewart, D.: Level set methods applied to modeling detonation shock dynamics. J. Comput. Phys. 126(2), 390–409 (1996). doi: 10.1006/jcph.1996.0145 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Noumir, Y., Le Guilcher, A., Lardjane, N., Monneau, R., Sarrazin, A.: A fast-marching like algorithm for geometrical shock dynamics. J. Comput. Phys. 284, 206–229 (2015). doi: 10.1016/j.jcp.2014.12.019 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Schwendeman, D.W., Whitham, G.B.: On converging shock waves. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 413, pp. 297–311 (1987). doi: 10.1098/rspa.1987.0116
  19. 19.
    Schwendeman, D.W.: On converging shock waves of spherical and polyhedral form. J. Fluid Mech. 454, 365–386 (2002). doi: 10.1017/S0022112001007170 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Besset, C., Blanc, E.: Propagation of vertical shock waves in the atmosphere. J. Acoust. Soc. Am. 95(4), 1830–1839 (1994). doi: 10.1121/1.408689 CrossRefGoogle Scholar
  21. 21.
    Bdzil, J.B., Stewart, D.S.: Modeling two-dimensional detonations with detonation shock dynamics. Phys. Fluids A Fluid Dyn. 1(7), 1261–1267 (1989). doi: 10.1063/1.857349 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sharma, V.D., Radha, C.: On one-dimensional planar and nonplanar shock waves in a relaxing gas. Phys. Fluids 6(6), 2177–2190 (1994). doi: 10.1063/1.868220 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sharma, V.D., Radha, C.: Three dimensional shock wave propagation in an ideal gas. Int. J. Non Linear Mech. 30(3), 305–322 (1995). doi: 10.1016/0020-7462(95)00005-9 CrossRefMATHGoogle Scholar
  24. 24.
    Pandey, M., Sharma, V.D.: Kinematics of a shock wave of arbitrary strength in a non-ideal gas. Q. Appl. Math. 67(3), 401–418 (2009). doi: 10.1090/S0033-569X-09-01111-5 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Truesdell, C., Toupin, R.: The classical field theories. In: Flügge S. (ed) Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, pp. 226–858. Springer, Berlin (1960). doi: 10.1007/978-3-642-45943-6_2
  26. 26.
    Wright, T.W.: An intrinsic description of unsteady shock waves. Q. J. Mech. Appl. Math. 29(3), 311–324 (1976). doi: 10.1093/qjmam/29.3.311 CrossRefMATHGoogle Scholar
  27. 27.
    Arora, R., Siddiqui, M.J.: Evolutionary behavior of weak shocks in a non-ideal gas. J. Theor. Appl. Phys. 7(1), 1–6 (2013). doi: 10.1186/2251-7235-7-14 CrossRefGoogle Scholar
  28. 28.
    Sharma, V.D., Venkatraman, R.: Evolution of weak shocks in one dimensional planar and non-planar gasdynamics flows. Int. J. Non Linear Mech. 47(8), 918–926 (2012). doi: 10.1016/j.ijnonlinmec.2012.06.001 CrossRefGoogle Scholar
  29. 29.
    Baskar, S., Prasad, P.: Propagation of curved shock fronts using shock ray theory and comparison with other theories. Journal of Fluid Mechanics 523, 171–198 (2005). doi: 10.1017/S0022112004001910 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves, vol. 21. Springer, Berlin (1999)MATHGoogle Scholar
  31. 31.
    Best, J.P.: A generalisation of the theory of geometrical shock dynamics. Shock Waves 1(4), 251–273 (1991). doi: 10.1007/BF01418882 CrossRefMATHGoogle Scholar
  32. 32.
    Varadarajan, P.A.: Noise transmission along shock-waves. PhD Thesis, The University of Michigan (2011)Google Scholar
  33. 33.
    Oshima, K., Sugaya, K., Yamamoto, M., Totoki, T.: Diffraction of a plane shock wave around a corner. ISAS Rep. 30(2), 51–82 (1965)Google Scholar
  34. 34.
    Whitham, G.B.: Chap. 6: Gas dynamics. In: Linear and Nonlinear Waves, 3rd edn. Wiley (1999). doi: 10.1002/9781118032954
  35. 35.
    Guderley, G.V.: Starke kugelige und zylindrische verdichtungsstösse in der nähe des kugelmittelpunktes bzw. der zylinderachse. Luftfahrtforschung 19(9), 302–312 (1942)MathSciNetMATHGoogle Scholar
  36. 36.
    Huynh, H.T.: Accurate monotone cubic interpolation. SIAM J. Numer. Anal. 30(1), 57–100 (1993). doi: 10.1137/0730004 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Jourdren, H.: HERA: a hydrodynamic AMR platform for multi-physics simulations. In: Adaptive Mesh Refinement-Theory and Applications, pp. 283–294. Springer (2005). doi: 10.1007/3-540-27039-6_19
  38. 38.
    Éveillard, S., Lardjane, N., Vinçont, J.Y., Sochet, I.: Towards a fast-running method for blast-wave mitigation by a prismatic blast wall. C. R. Mécanique 341(8), 625–635 (2013). doi: 10.1016/j.crme.2013.06.004 CrossRefGoogle Scholar
  39. 39.
    Nguyen-Dinh, M., Lardjane, N., Duchenne, C., Gainville, O.: Direct simulations of outdoor blast wave propagation from source to receiver. Shock Waves. (2017). doi: 10.1007/s00193-017-0711-2
  40. 40.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, pp. 163–169. ACM (1987). doi: 10.1145/37401.37422
  41. 41.
    Skews, B.W.: The shape of a diffracting shock wave. J. Fluid Mech. 29(02), 297–304 (1967). doi: 10.1017/S0022112067000825 CrossRefGoogle Scholar
  42. 42.
    Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, Berlin (2007) doi: 10.1007/978-3-540-71382-1

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.CERMICSENPCMarne la Vallée Cedex 2France
  3. 3.CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Université Pierre et Marie Curie, Paris 06Sorbonne UniversitésParisFrance

Personalised recommendations