Advertisement

Shock Waves

, Volume 28, Issue 2, pp 243–252 | Cite as

Evaluation of the existing triple point path models with new experimental data: proposal of an original empirical formulation

  • J. Boutillier
  • L. Ehrhardt
  • S. De Mezzo
  • C. Deck
  • P. Magnan
  • P. Naz
  • R. Willinger
Original Article

Abstract

With the increasing use of improvised explosive devices (IEDs), the need for better mitigation, either for building integrity or for personal security, increases in importance. Before focusing on the interaction of the shock wave with a target and the potential associated damage, knowledge must be acquired regarding the nature of the blast threat, i.e., the pressure–time history. This requirement motivates gaining further insight into the triple point (TP) path, in order to know precisely which regime the target will encounter (simple reflection or Mach reflection). Within this context, the purpose of this study is to evaluate three existing TP path empirical models, which in turn are used in other empirical models for the determination of the pressure profile. These three TP models are the empirical function of Kinney, the Unified Facilities Criteria (UFC) curves, and the model of the Natural Resources Defense Council (NRDC). As discrepancies are observed between these models, new experimental data were obtained to test their reliability and a new promising formulation is proposed for scaled heights of burst ranging from 24.6–172.9\(~\hbox {cm}/\hbox {kg}^{1/3}\).

Keywords

Blast waves Triple point Shock reflection Empirical models 

Notes

Acknowledgements

This work was partially supported by the French ANR (Agence Nationale pour la Recherche) program ASTRID 2012 (Grant Number ANR-12-ASTR-0025-01), in the context of the BLASTHOR project, and by the French Ministry of Defense DGA (Direction Générale de l’Armement). The authors wish to thank the staff of the CETID and of the French-German Research Institute of Saint-Louis (ISL) for their skills and goodwill, contributing to the successful accomplishment of these campaigns. CETID is also acknowledged for providing their experimental ground.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the French ANR (Agence Nationale pour la Recherche) program ASTRID 2012 (Grant Number ANR-12-ASTR-0025-01).

References

  1. 1.
    Belmont, P.J., Schoenfeld, A.J., Goodman, G.: Epidemiology of combat wounds in operation Iraqi freedom and operation enduring freedom: orthopaedic burden of disease. J. Surg. Orthop. Adv. 19, 2–7 (2010)Google Scholar
  2. 2.
    Kinney, G.F., Graham, K.J.: Explosive Shocks in Air. Springer, New York (1985). doi: 10.1007/978-3-642-86682-1 CrossRefGoogle Scholar
  3. 3.
    Esparza, E.D.: Blast measurements and equivalency for spherical charges at small scaled distances. Int. J. Impact Eng. 4, 23–40 (1986). doi: 10.1016/0734-743X(86)90025-4 CrossRefGoogle Scholar
  4. 4.
    Hyde, D.: User’s guide for microcomputers programs conwep and FUNPRO applications of TM 5-855-1: Fundamentals of protective design for conventional weapons. US Army Eng. Waterways Exp. Stn., AD-A195 867 (1988)Google Scholar
  5. 5.
    Formby, S.A., Wharton, R.K.: Blast characteristics and TNT equivalence values for some commercial explosives detonated at ground level. J. Hazard. Mater. 50, 183–198 (1996). doi: 10.1016/0304-3894(96)01791-8 CrossRefGoogle Scholar
  6. 6.
    Wharton, R.K., Formby, S.A., Merrifield, R.: Airblast TNT equivalence for a range of commercial blasting explosives. J. Hazard. Mater. 79, 31–39 (2000). doi: 10.1016/S0304-3894(00)00168-0 CrossRefGoogle Scholar
  7. 7.
    UFC 3-340-02: Structures to resist the effect of accidental explosions. US Army Corps of Eng. Naval Facil. Eng. Command, Air Force Civil Engineer Support Agency (2008)Google Scholar
  8. 8.
    Reisler, R.E., Pettit, B.A.: Project DIPOLE WEST—multiburst environment (non-simultaneous detonations). BRL Report No. 1921, USA Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland (1976)Google Scholar
  9. 9.
    LS-DYNA R 7.0, Manual I. (2013) http://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r-7.0-vol-i Accessed 6 Aug 2017
  10. 10.
    Ehrhardt, L., Boutillier, J., Magnan, P., Deck, C., De Mezzo, S., Willinger, R., Cheinet, S.: Evaluation of overpressure prediction models for air blast above the triple point. J. Hazar. Mater. 311, 176–185 (2016). doi: 10.1016/j.jhazmat.2016.02.051 CrossRefGoogle Scholar
  11. 11.
    McKinzie, M.G., Cochran T.B., Norris R.S., Arkin W.M.: The US Nuclear War Plan: A Time for Change. Nat. Resour. Def. Counc. (2001)Google Scholar
  12. 12.
    Needham, C.E.: Blast Waves. Springer, New York (2010). doi: 10.1007/978-3-642-05288-0 CrossRefGoogle Scholar
  13. 13.
    Sommersel, O.K., Bjerketvedt, D., Christensen, S.O., Krest, O., Vaagsaether, K.: Application of background oriented schlieren for quantitative measurements of shock waves from explosions. Shock Waves 18, 291–297 (2008). doi: 10.1007/s00193-008-0142-1 CrossRefMATHGoogle Scholar
  14. 14.
    Mizukaki, T., Wakabayashi, K., Matsumura, T., Nakayama, K.: Background-oriented schlieren with natural background for quantitative visualization of open-air explosions. Shock Waves 24, 69–78 (2014). doi: 10.1007/s00193-013-0465-4 CrossRefGoogle Scholar
  15. 15.
    Igra, O., Seiler, F.: Experimental Methods of Shock Wave Research. Springer (2016). doi: 10.1007/978-3-319-23745-9
  16. 16.
    Dewey, J.M.: The TNT equivalence of an optimum propane-oxygen mixture. J. Phys. D. Appl. Phys. 38, 4245–4251 (2005). doi: 10.1088/0022-3727/38/23/017 CrossRefGoogle Scholar
  17. 17.
    Boutillier, J., De Mezzo, S., Deck, C., Ehrhardt, L., Magnan, P., Naz, P., Willinger, R.: New experimental data on blast interaction with instrumented structures. Proceedings of the MABS \(24{{\rm th}}\) Conference. Halifax (Canada) (2016)Google Scholar
  18. 18.
    Ehrhardt, L., Boutillier, J., Magnan, P., Deck, C., De Mezzo, S., Willinger, R.: Blast with ground reflection, a real scaled experimental and numerical study. Proceedings of the MABS 23rd Conference. Oxford (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • J. Boutillier
    • 1
  • L. Ehrhardt
    • 2
  • S. De Mezzo
    • 2
  • C. Deck
    • 1
  • P. Magnan
    • 2
  • P. Naz
    • 2
  • R. Willinger
    • 1
  1. 1.Multiscale Materials and BiomechanicsStrasbourg University, ICube, UMR 7357StrasbourgFrance
  2. 2.French-German Research Institute of Saint-Louis (ISL)Saint-LouisFrance

Personalised recommendations