Skip to main content
Log in

Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Goel, M.D., Matsagar, V.A.: Blast-resistant design of structures. Pract. Period. Struct. Des. Constr. 19, 4014007 (2014). doi:10.1061/(ASCE)SC.1943-5576.0000188

    Article  Google Scholar 

  2. van der Voort, M.M., van Wees, R.M.M., Brouwer, S.D., van der Jagt-Deutekom, M.J., Verreault, J.: Forensic analysis of explosions: Inverse calculation of the charge mass. Forensic Sci. Int. 252, 11–21 (2015). doi:10.1016/j.forsciint.2015.04.014

    Article  Google Scholar 

  3. U.S. DoD: Structures to Resist the Effects of Accidental Explosions. Deparment of Defense, Washington, DC, USA. UFC 3-340-02 (2008)

  4. U.A.E.W.E. Station: Fundamentals of Protective Design for Conventional Weapons. TM5-855-1, Department of the Army, Vicksburg (1986)

  5. U.S. Army En: ConWep, Conventional Weapons Effects Program. D.W. Hyde, US Army En, Vicksburg (1991)

  6. Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., Strehlow, R.A.: Explosion Hazards and Evaluation. Elsevier, Amsterdam (1983)

    Google Scholar 

  7. Smith, P.D., Hetherington, J.G.: Blast and Ballistic Loading of Structures. Butterworth-Heinemann, Oxford, Great Britain (1994)

  8. Cormie, D., Mays, G., Smith, P.: Blast Effects on Buildings, 2nd edn. Thomas Telford Ltd, London (2009)

  9. Smith, P.D., Rose, T.A., Krahe, S.L., Franks, M.A.: Façade failure effects on blast propagation along city streets. Proc. Inst. Civ. Eng. Struct. Build. 156, 359–365 (2003). doi:10.1680/stbu.2003.156.4.359

    Article  Google Scholar 

  10. Tyas, A., Warren, J.A., Bennett, T., Fay, S.: Prediction of clearing effects in far-field blast loading of finite targets. Shock Waves 21, 111–119 (2011). doi:10.1007/s00193-011-0308-0

    Article  Google Scholar 

  11. Wang, X., Remotigue, M., Arnoldus, Q., Janus, M., Luke, E., Thompson, D., Weed, R., Bessette, G.: High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy. Shock Waves 27, 409–422 (2017). doi:10.1007/s00193-016-0680-x

    Article  Google Scholar 

  12. Rose, T.A., Smith, P.D., May, J.H.: The interaction of oblique blast waves with buildings. Shock Waves 16, 35–44 (2006). doi:10.1007/s00193-006-0051-0

    Article  Google Scholar 

  13. Remennikov, A.M., Rose, T.A.: Modelling blast loads on buildings in complex city geometries. Comput. Struct. 83, 2197–2205 (2005). doi:10.1016/j.compstruc.2005.04.003

    Article  Google Scholar 

  14. Smith, P.D., Rose, T.A.: Blast wave propagation in city streets—an overview. Prog. Struct. Eng. Mater. 8, 16–28 (2006). doi:10.1002/pse.209

    Article  Google Scholar 

  15. Luccioni, B., Ambrosini, D., Danesi, R.: Blast load assessment using hydrocodes. Eng. Struct. 28, 1736–1744 (2006). doi:10.1016/j.engstruct.2006.02.016

    Article  Google Scholar 

  16. Gebbeken, N., Döge, T.: Explosion protection—Architectural design, urban planning and landscape planning. Int. J. Prot. Struct. 1, 1–22 (2010). doi:10.1260/2041-4196.1.1.1

    Article  Google Scholar 

  17. Codina, R., Ambrosini, D., de Borbón, F.: Numerical study of confined explosions in urban environments. Int. J. Prot. Struct. 4, 591–617 (2013). doi:10.1260/2041-4196.4.4.591

    Article  Google Scholar 

  18. Feldgun, V.R., Karinski, Y.S., Edri, I., Yankelevsky, D.Z.: Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures. Int. J. Impact Eng. 90, 46–60 (2016). doi:10.1016/j.ijimpeng.2015.12.001

  19. Anderson, C.E., Baker, W.E., Wauters, D.K., Morris, B.L.: Quasi-static pressure, duration, and impulse for explosions (e.g. HE) in structures. Int. J. Mech. Sci. 25, 455–464 (1983). doi:10.1016/0020-7403(83)90059-0

    Article  Google Scholar 

  20. Edri, I., Savir, Z., Feldgun, V., Karinski, Y., Yankelevsky, D.: On blast pressure analysis due to a partially confined explosion: I. Experimental studies. Int. J. Prot. Struct. 2, 1–20 (2011). doi:10.1260/2041-4196.2.1.1

    Article  Google Scholar 

  21. Sauvan, P.E., Sochet, I., Trélat, S.: Analysis of reflected blast wave pressure profiles in a confined room. Shock Waves 22, 253–264 (2012). doi:10.1007/s00193-012-0363-1

    Article  Google Scholar 

  22. Ram, O., Nof, E., Sadot, O.: Dependence of the blast load penetrating into a structure on initial conditions and internal geometry. Exp. Therm. Fluid Sci. 78, 65–74 (2016). doi:10.1016/j.expthermflusci.2016.05.012

    Article  Google Scholar 

  23. Luccioni, B., Ambrosini, D., Danesi, R.: Analysis of building collapse under blast loads. Eng. Struct. 26(1), 63–71 (2004). doi:10.1016/j.engstruct.2003.08.011

    Article  Google Scholar 

  24. Locking, P.: The trouble with TNT equivalence. In: 26th International Symposium on Ballistics, Miami, FL, 12–16 September (2011)

  25. Locking, P.: TNT equivalence—experimental comparison against prediction. In: 27th International Symposium on Ballistics, Freiburg, 22–26 April (2013)

  26. Grisaro, H., Edri, I.: Numerical investigation of explosive bare charge equivalent weight. Int. J. Prot. Struct. 8, 199–220 (2017). doi:10.1177/2041419617700256

    Article  Google Scholar 

  27. Codina, R., Ambrosini, D., de Borbón, F.: Alternatives to prevent the failure of RC members under close-in blast loadings. Eng. Fail. Anal. 60, 96–106 (2016). doi:10.1016/j.engfailanal.2015.11.038

    Article  Google Scholar 

  28. Millington, G.: Discussion of ‘The protection of buildings against terrorism and disorder’. In: Elliott, C.L., Mays, G.C., Smith, P.D. (eds.) Proceedings of the Institution of Civil Engineers-Structures & Buildings, vol. 104, pp. 343–346 (1994)

  29. Luccioni, B., Ambrosini, D., Danesi, R.: Analysing explosive damage in an urban environment. Proc. Inst. Civ. Eng. Struct. Build. 158, 1–12 (2005). doi:10.1680/stbu.2005.158.1.1

    Article  Google Scholar 

  30. Ambrosini, D., Luccioni, B., Jacinto, A., Danesi, R.: Location and mass of explosive from structural damage. Eng. Struct. 27, 167–176 (2005). doi:10.1016/j.engstruct.2004.09.003

    Article  Google Scholar 

Download references

Acknowledgements

The cooperation in the blast tests of Oscar Curadelli, Gabriel Houri, Fernanda de Borbón, Martín Domizio, Hernán Garrido, and Carlos Martínez are specially acknowledged. The financial support of CONICET (Argentina) and SECTYP (National University of Cuyo) is also gratefully acknowledged. Special acknowledgements are extended to the reviewers of the first version of the paper because their useful suggestions led to improvements of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ambrosini.

Additional information

Communicated by D. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codina, R., Ambrosini, D. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading. Shock Waves 28, 227–241 (2018). https://doi.org/10.1007/s00193-017-0733-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0733-9

Keywords

Navigation