Shock Waves

, Volume 28, Issue 2, pp 227–241 | Cite as

Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

  • R. Codina
  • D. Ambrosini
Original Article


For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.


Leakage of blast waves External blast loading Vented room Confinement Internal overpressures and impulses Masonry wall 



The cooperation in the blast tests of Oscar Curadelli, Gabriel Houri, Fernanda de Borbón, Martín Domizio, Hernán Garrido, and Carlos Martínez are specially acknowledged. The financial support of CONICET (Argentina) and SECTYP (National University of Cuyo) is also gratefully acknowledged. Special acknowledgements are extended to the reviewers of the first version of the paper because their useful suggestions led to improvements of the work.


  1. 1.
    Goel, M.D., Matsagar, V.A.: Blast-resistant design of structures. Pract. Period. Struct. Des. Constr. 19, 4014007 (2014). doi: 10.1061/(ASCE)SC.1943-5576.0000188 CrossRefGoogle Scholar
  2. 2.
    van der Voort, M.M., van Wees, R.M.M., Brouwer, S.D., van der Jagt-Deutekom, M.J., Verreault, J.: Forensic analysis of explosions: Inverse calculation of the charge mass. Forensic Sci. Int. 252, 11–21 (2015). doi: 10.1016/j.forsciint.2015.04.014 CrossRefGoogle Scholar
  3. 3.
    U.S. DoD: Structures to Resist the Effects of Accidental Explosions. Deparment of Defense, Washington, DC, USA. UFC 3-340-02 (2008)Google Scholar
  4. 4.
    U.A.E.W.E. Station: Fundamentals of Protective Design for Conventional Weapons. TM5-855-1, Department of the Army, Vicksburg (1986)Google Scholar
  5. 5.
    U.S. Army En: ConWep, Conventional Weapons Effects Program. D.W. Hyde, US Army En, Vicksburg (1991)Google Scholar
  6. 6.
    Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., Strehlow, R.A.: Explosion Hazards and Evaluation. Elsevier, Amsterdam (1983)Google Scholar
  7. 7.
    Smith, P.D., Hetherington, J.G.: Blast and Ballistic Loading of Structures. Butterworth-Heinemann, Oxford, Great Britain (1994)Google Scholar
  8. 8.
    Cormie, D., Mays, G., Smith, P.: Blast Effects on Buildings, 2nd edn. Thomas Telford Ltd, London (2009)Google Scholar
  9. 9.
    Smith, P.D., Rose, T.A., Krahe, S.L., Franks, M.A.: Façade failure effects on blast propagation along city streets. Proc. Inst. Civ. Eng. Struct. Build. 156, 359–365 (2003). doi: 10.1680/stbu.2003.156.4.359 CrossRefGoogle Scholar
  10. 10.
    Tyas, A., Warren, J.A., Bennett, T., Fay, S.: Prediction of clearing effects in far-field blast loading of finite targets. Shock Waves 21, 111–119 (2011). doi: 10.1007/s00193-011-0308-0 CrossRefGoogle Scholar
  11. 11.
    Wang, X., Remotigue, M., Arnoldus, Q., Janus, M., Luke, E., Thompson, D., Weed, R., Bessette, G.: High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy. Shock Waves 27, 409–422 (2017). doi: 10.1007/s00193-016-0680-x CrossRefGoogle Scholar
  12. 12.
    Rose, T.A., Smith, P.D., May, J.H.: The interaction of oblique blast waves with buildings. Shock Waves 16, 35–44 (2006). doi: 10.1007/s00193-006-0051-0 CrossRefGoogle Scholar
  13. 13.
    Remennikov, A.M., Rose, T.A.: Modelling blast loads on buildings in complex city geometries. Comput. Struct. 83, 2197–2205 (2005). doi: 10.1016/j.compstruc.2005.04.003 CrossRefGoogle Scholar
  14. 14.
    Smith, P.D., Rose, T.A.: Blast wave propagation in city streets—an overview. Prog. Struct. Eng. Mater. 8, 16–28 (2006). doi: 10.1002/pse.209 CrossRefGoogle Scholar
  15. 15.
    Luccioni, B., Ambrosini, D., Danesi, R.: Blast load assessment using hydrocodes. Eng. Struct. 28, 1736–1744 (2006). doi: 10.1016/j.engstruct.2006.02.016 CrossRefGoogle Scholar
  16. 16.
    Gebbeken, N., Döge, T.: Explosion protection—Architectural design, urban planning and landscape planning. Int. J. Prot. Struct. 1, 1–22 (2010). doi: 10.1260/2041-4196.1.1.1 CrossRefGoogle Scholar
  17. 17.
    Codina, R., Ambrosini, D., de Borbón, F.: Numerical study of confined explosions in urban environments. Int. J. Prot. Struct. 4, 591–617 (2013). doi: 10.1260/2041-4196.4.4.591 CrossRefGoogle Scholar
  18. 18.
    Feldgun, V.R., Karinski, Y.S., Edri, I., Yankelevsky, D.Z.: Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures. Int. J. Impact Eng. 90, 46–60 (2016). doi: 10.1016/j.ijimpeng.2015.12.001
  19. 19.
    Anderson, C.E., Baker, W.E., Wauters, D.K., Morris, B.L.: Quasi-static pressure, duration, and impulse for explosions (e.g. HE) in structures. Int. J. Mech. Sci. 25, 455–464 (1983). doi: 10.1016/0020-7403(83)90059-0 CrossRefGoogle Scholar
  20. 20.
    Edri, I., Savir, Z., Feldgun, V., Karinski, Y., Yankelevsky, D.: On blast pressure analysis due to a partially confined explosion: I. Experimental studies. Int. J. Prot. Struct. 2, 1–20 (2011). doi: 10.1260/2041-4196.2.1.1 CrossRefGoogle Scholar
  21. 21.
    Sauvan, P.E., Sochet, I., Trélat, S.: Analysis of reflected blast wave pressure profiles in a confined room. Shock Waves 22, 253–264 (2012). doi: 10.1007/s00193-012-0363-1 CrossRefGoogle Scholar
  22. 22.
    Ram, O., Nof, E., Sadot, O.: Dependence of the blast load penetrating into a structure on initial conditions and internal geometry. Exp. Therm. Fluid Sci. 78, 65–74 (2016). doi: 10.1016/j.expthermflusci.2016.05.012 CrossRefGoogle Scholar
  23. 23.
    Luccioni, B., Ambrosini, D., Danesi, R.: Analysis of building collapse under blast loads. Eng. Struct. 26(1), 63–71 (2004). doi: 10.1016/j.engstruct.2003.08.011 CrossRefGoogle Scholar
  24. 24.
    Locking, P.: The trouble with TNT equivalence. In: 26th International Symposium on Ballistics, Miami, FL, 12–16 September (2011)Google Scholar
  25. 25.
    Locking, P.: TNT equivalence—experimental comparison against prediction. In: 27th International Symposium on Ballistics, Freiburg, 22–26 April (2013)Google Scholar
  26. 26.
    Grisaro, H., Edri, I.: Numerical investigation of explosive bare charge equivalent weight. Int. J. Prot. Struct. 8, 199–220 (2017). doi: 10.1177/2041419617700256 CrossRefGoogle Scholar
  27. 27.
    Codina, R., Ambrosini, D., de Borbón, F.: Alternatives to prevent the failure of RC members under close-in blast loadings. Eng. Fail. Anal. 60, 96–106 (2016). doi: 10.1016/j.engfailanal.2015.11.038 CrossRefGoogle Scholar
  28. 28.
    Millington, G.: Discussion of ‘The protection of buildings against terrorism and disorder’. In: Elliott, C.L., Mays, G.C., Smith, P.D. (eds.) Proceedings of the Institution of Civil Engineers-Structures & Buildings, vol. 104, pp. 343–346 (1994)Google Scholar
  29. 29.
    Luccioni, B., Ambrosini, D., Danesi, R.: Analysing explosive damage in an urban environment. Proc. Inst. Civ. Eng. Struct. Build. 158, 1–12 (2005). doi: 10.1680/stbu.2005.158.1.1 CrossRefGoogle Scholar
  30. 30.
    Ambrosini, D., Luccioni, B., Jacinto, A., Danesi, R.: Location and mass of explosive from structural damage. Eng. Struct. 27, 167–176 (2005). doi: 10.1016/j.engstruct.2004.09.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Structural Engineering Master Program, Engineering FacultyUniversity of CuyoMendozaArgentina
  2. 2.CONICET, National Research Council from ArgentinaBuenos AiresArgentina

Personalised recommendations