Shock Waves

, Volume 28, Issue 2, pp 175–189 | Cite as

Shock enhancement of cellular materials subjected to intensive pulse loading

  • J. Zhang
  • J. Fan
  • Z. Wang
  • L. Zhao
  • Z. Li
Original Article


Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.


Cellular materials Voronoi model Pulse loading Shock enhancement Local strain field 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 11572214, 11402163, 11672199 and 11602161), Shanxi Scholarship Council of China (2013-046), Natural Science Foundation of Shanxi Province (No. 201601D021025), State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No. 31615008) and the Top Young Academic Leaders of Shanxi, Opening Foundation for State Key Laboratory for Strength and Vibration of Mechanical Structures and Opening Foundation for State Key Laboratory of Explosion Science and Technology (Grant No. KFJJ16-07M). The financial contributions are gratefully acknowledged.


  1. 1.
    Zhu, F., Chou, C.C., Yang, K.H.: Shock enhancement effect of lightweight composite structures and materials. Compos. Part B 42, 1202–1211 (2011). doi: 10.1016/j.compositesb.2011.02.014 CrossRefGoogle Scholar
  2. 2.
    Tan, P.J., Harrigan, J.J., Reid, S.R.: Inertia effect in the uniaxial dynamic compression of a closed-cell aluminium alloy foam. J. Mater. Sci. Technol. 18, 480–488 (2002). doi: 10.1179/026708302225002092 CrossRefGoogle Scholar
  3. 3.
    Deshpande, V.S., Fleck, N.A.: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 24, 277–298 (2000). doi: 10.1016/S0734-743X(99)00153-0 CrossRefGoogle Scholar
  4. 4.
    Dannemann, K.A., Lankford Jr., J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000). doi: 10.1016/S0921-5093(00)01219-3 CrossRefGoogle Scholar
  5. 5.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Boston (2000)Google Scholar
  7. 7.
    Hanssen, A.G., Enstock, L., Langseth, M.: Close-range blast loading of aluminium foam panels. Int. J. Impact Eng. 27, 593–618 (2002). doi: 10.1016/S0734-743X(01)00155-5 CrossRefGoogle Scholar
  8. 8.
    Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19(5–6), 531–570 (1997). doi: 10.1016/S0734-743X(97)00016-X CrossRefGoogle Scholar
  9. 9.
    Reid, S.R., Bell, W.W., Barr, R.A.: Structural plastic shock model for one-dimensional ring systems. Int. J. Impact Eng. 1(2), 175–191 (1983). doi: 10.1016/0734-743X(83)90005-2 CrossRefGoogle Scholar
  10. 10.
    Li, Q.M., Meng, H.: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. Int. J. Impact Eng. 27(10), 1049–1065 (2002). doi: 10.1016/S0734-743X(02)00016-7 CrossRefGoogle Scholar
  11. 11.
    Daxner, T., Böhm, H.J., Rammerstorfer, F.G.: Mesoscopic simulation of inhomogeneous metallic foams with respect to energy absorption. Comput. Mater. Sci. 16(1–4), 61–69 (1999). doi: 10.1016/S0927-0256(99)00046-4 CrossRefGoogle Scholar
  12. 12.
    Wang, Z.H., Zhang, Y.F., Ren, H.L., Zhao, L.M.: A study on compressive shock wave propagation in metallic foams. Sci. China Phys. Mech. Astron. 53(2), 279–287 (2010). doi: 10.1007/s11433-009-0271-2 CrossRefGoogle Scholar
  13. 13.
    Karagiozova, D.: Velocity attenuation and force transfer by a single- and double-layer claddings made of foam materials. Int. J. Protect. Struct. 2(4), 417–437 (2011). doi: 10.1260/2041-4196.2.4.417 CrossRefGoogle Scholar
  14. 14.
    Ma, G.W., Ye, Z.Q., Shao, Z.S.: Modeling loading rate effect on crushing stress of metallic cellular materials. Int. J. Impact Eng. 36, 775–782 (2009). doi: 10.1016/j.ijimpeng.2008.11.013 CrossRefGoogle Scholar
  15. 15.
    Song, Y.Z., Wang, Z.H., Zhao, L.M., Luo, J.: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Mater. Des. 31, 4281–4289 (2010). doi: 10.1016/j.matdes.2010.04.007 CrossRefGoogle Scholar
  16. 16.
    Li, Z., Zhang, J., Fan, J., Wang, Z., Zhao, L.: On crushing response of the three-dimensional closed-cell foam based on Voronoi model. Mech. Mater. 68, 85–94 (2014). doi: 10.1016/j.mechmat.2013.08.009 CrossRefGoogle Scholar
  17. 17.
    Seitz, M.W., Skews, B.W.: Effect of compressible foam properties on pressure amplification during shock wave impact. Shock Waves 15, 177–197 (2006). doi: 10.1007/s00193-006-0033-2 CrossRefGoogle Scholar
  18. 18.
    Seitz, M.W., Skews, B.W.: An analytical model for shock wave impact on compressible open-cell foam. Shock Waves 16, 287–298 (2007). doi: 10.1007/s00193-007-0073-2 CrossRefMATHGoogle Scholar
  19. 19.
    Mazor, G., Ben-Dor, G., Igra, O., Sorek, S.: Shock wave interaction with cellular materials Part I: analytical investigation and governing equations. Shock Waves 3, 159–165 (1994). doi: 10.1007/BF01414710 CrossRefMATHGoogle Scholar
  20. 20.
    Petel, O.E., Ouellet, S., Higgins, A.J., Frost, D.L.: The elastic–plastic behaviour of foam under shock loading. Shock Waves 23(1), 55–67 (2013). doi: 10.1007/s00193-012-0414-7 CrossRefGoogle Scholar
  21. 21.
    Zheng, Z., Yu, J., Li, J.: Dynamic crushing of 2D cellular structures: A finite element study. Int. J. Impact Eng 32, 650–664 (2005). doi: 10.1016/j.ijimpeng.2005.05.007 CrossRefGoogle Scholar
  22. 22.
    Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième Mémorie: recherches sur les paralléloèdres primitifs. J. für die reine und Angew. Math. 134, 198–287 (1908)MathSciNetMATHGoogle Scholar
  23. 23.
    Zhu, H.X., Thorpe, S.M., Windle, A.H.: The geometrical properties of irregular two-dimensional Voronoi tessellations. Philos. Mag. A 81(12), 2765–2783 (2001). doi: 10.1080/01418610010032364 CrossRefGoogle Scholar
  24. 24.
    Zhu, H.X., Hobdell, J.R., Windle, A.H.: Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J. Mech. Phys. Solids 49(4), 857–870 (2001). doi: 10.1016/S0022-5096(00)00046-6 CrossRefMATHGoogle Scholar
  25. 25.
    Li, K., Gao, X.L., Wang, J.: Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness. Int. J. Solids Struct. 44, 5003–5026 (2007). doi: 10.1016/j.ijsolstr.2006.12.017 CrossRefMATHGoogle Scholar
  26. 26.
    Schaffner, G., Guo, X.D.E., Silva, M.J., Gibson, L.J.: Modeling fatigue damage accumulation in two-dimensional Voronoi honeycombs. Int. J. Mech. Sci. 42(4), 645–656 (2000). doi: 10.1016/S0020-7403(99)00031-4 CrossRefMATHGoogle Scholar
  27. 27.
    Tan, P.J., Reid, S.R., Harrigan, J.J., Zou, Z., Li, S.: Dynamic compressive strength properties of aluminium foams. Part I–experimental data and observations. J. Mech. Phys. Solids 53, 2174–2205 (2005). doi: 10.1016/j.jmps.2005.05.007 CrossRefGoogle Scholar
  28. 28.
    Zou, Z., Reid, S.R., Tan, P.J., Li, S., Harrigan, J.J.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36(1), 165–176 (2009). doi: 10.1016/j.ijimpeng.2007.11.008 CrossRefGoogle Scholar
  29. 29.
    Tekoglu, C., Gibson, L.J., Pardoen, T., Onck, P.R.: Size effects in foams: experiments and modeling. Prog. Mater. Sci. 56(2), 109–138 (2011). doi: 10.1016/j.pmatsci.2010.06.001 CrossRefGoogle Scholar
  30. 30.
    Zheng, Z.J., Liu, Y.D., Yu, J.L., Reid, S.R.: Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes. Int. J. Impact Eng. 42, 66–79 (2012). doi: 10.1016/j.ijimpeng.2011.09.009 CrossRefGoogle Scholar
  31. 31.
    Li, J., Shimizu, F.: Least-square atomic strain. (2005). Accessed 24 May 2017
  32. 32.
    Gullett, P.M., Horstemeyer, M.F., Baskes, M.I., Fang, H.: A deformation gradient tensor and strain tensors for atomistic simulations. Model Simul. Mater. Sci. Eng. 16(1), 015001 (2008). doi: 10.1088/0965-0393/16/1/015001. (17pp)CrossRefGoogle Scholar
  33. 33.
    Zimmerman, J.A., Bammann, D.J., Gao, H.: Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 46(2), 238–253 (2009). doi: 10.1016/j.ijsolstr.2008.08.036 CrossRefMATHGoogle Scholar
  34. 34.
    Liao, S.F., Zheng, Z.J., Yu, J.L.: Dynamic crushing of 2D cellular structures: Local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013). doi: 10.1016/j.ijimpeng.2013.01.008 CrossRefGoogle Scholar
  35. 35.
    Reddy, J.N.: An Introduction to Continuum Mechanics. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  36. 36.
    Song, Y.Z., Zhang, X.H., Li, Z.Q., Zhao, L.M.: In-plane dynamic crushing of 2D cellular structures with the edges deleted. In: Advances in Heterogeneous Material Mechanics, 2nd International Conference on Heterogeneous Material Mechanics (ICHMM-2008), Huangshan, pp. 829–832 (2008)Google Scholar
  37. 37.
    Zhao, L.M., Song, Y.Z., Li, Z.Q.: Study of the dynamic crushing behavior of cellular materials by using the Voronoi random models. J. Mech. Strength 31(6), 932–938 (2009). (in Chinese) Google Scholar
  38. 38.
    Zheng, Z.J., Yu, J.L.: Effect of random defects on dynamic response of honeycomb structures. Mater. Sci. Forum. 706–709, 805–810 (2012). doi: 10.4028/
  39. 39.
    Liu, Y.D., Yu, J.L., Zheng, Z.J., Li, J.R.: A numerical study on the rate sensitivity of cellular metals. Int. J. Solids Struct. 46(22–23), 3988–3998 (2009). doi: 10.1016/j.ijsolstr.2009.07.024 CrossRefMATHGoogle Scholar
  40. 40.
    Pattofatto, S., Elnasri, I., Zhao, H., Tsitsiris, H., Hild, F., Girard, Y.: Shock enhancement of cellular structures under impact loading: Part II analysis. J. Mech. Phys. Solids 55(12), 2672–2686 (2007). doi: 10.1016/j.jmps.2007.04.004 CrossRefGoogle Scholar
  41. 41.
    Lopatnikov, S.L., Gama, B.A., Haque, M.J., Krauthauser, C., Gillespie Jr., J.W., Guden, M., Hall, I.W.: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos. Struct. 61, 61–71 (2003). doi: 10.1016/S0263-8223(03)00039-4 CrossRefGoogle Scholar
  42. 42.
    Skews, B.W., Atkins, M.D., Seitz, M.W.: The impact of a shock wave on porous compressible foams. Fluid Mech. 253, 245–265 (1993). doi: 10.1017/S0022112093001788 CrossRefGoogle Scholar
  43. 43.
    Cooper, G.J., Townend, D.J., Cater, S.R., Pearce, B.P.: The role of stress waves in thoracic visceral injury from blast loading: Modification of stress transmission by foams and high-density materials. J. Biomech. 24(5), 273–285 (1991). doi: 10.1016/0021-9290(91)90346-O CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Applied Mechanics and Biomedical EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  3. 3.School of Civil Engineering and ArchitectureHubei University of Arts and ScienceXiangyangChina
  4. 4.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations