Advertisement

Shock Waves

, Volume 28, Issue 2, pp 163–173 | Cite as

Propagation behavior of the stress wave in a hollow Hopkinson transmission bar

  • G. Zou
  • X. Shen
  • C. Guo
  • K. S. Vecchio
  • F. Jiang
Original Article

Abstract

In order to investigate the stress wave propagation behavior through a hollow elastic bar that is used in a Hopkinson-bar-loaded fracture testing system, three-point bending fracture experiments were performed in such a system. The effects of sample span and diameter and wall thickness of the hollow elastic bar on the stress wave propagation behavior were studied numerically using the software of ANSYS/LS-DYNA. The experimental results demonstrated that the incident, reflected, and transmitted pulses calculated by the finite element method are coincident with those obtained from the Hopkinson-bar-loaded fracture tests. Compared to the solid transmission bar, the amplitude of the transmitted pulse is relatively larger in the hollow transmission bar under the same loading conditions and decreases with increasing wall thickness. On the other hand, when the inside diameter is fixed, the effect of the wall thickness on the stress wave characteristics is more obvious.

Keywords

Hollow elastic bar Three-point bending experiment Hopkinson pressure bar Numerical simulation 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the National Natural Science Foundation of China (Nos. 11402060 and 11172074).

References

  1. 1.
    Chen, W.N., Song, B.: Split Hopkinson (Kolsky) Bar: Design, Testing and Applications. Mechanical Engineering Series. Springer, Berlin (2011). doi: 10.1007/978-1-4419-7982-7 CrossRefzbMATHGoogle Scholar
  2. 2.
    Jiang, F.C., Vecchio, K.S.: Hopkinson-bar-loaded fracture experimental technique: a critical review on dynamic fracture toughness tests. Appl. Mech. Rev. 62, 0608021–06080239 (2009). doi: 10.1115/1.3124647 CrossRefGoogle Scholar
  3. 3.
    Popelar, C.H., Anderson Jr., C.E., Nagy, A.: An experimental method for determining dynamic fracture toughness. Exp. Mech. 40, 401–407 (2000). doi: 10.1007/BF02326486 CrossRefGoogle Scholar
  4. 4.
    Rubio, L., Fernández-Sáez, J., Navano, C.: Determination of dynamic fracture-initiation toughness using three-point bending tests in a modified Hopkinson pressure bar. Exp. Mech. 43, 379–386 (2003). doi: 10.1007/BF02411342 CrossRefGoogle Scholar
  5. 5.
    Guo, C.H., Jiang, F.C., Liu, R.T., Yang, Y.: Size effect on the contact state between fracture specimen and supports in Hopkinson-bar-loaded fracture test. Int. J. Fract. 169, 77–84 (2011). doi: 10.1007/s10704-011-9588-8 CrossRefGoogle Scholar
  6. 6.
    Rittel, D., Pineau, A., Clisson, J., Rota, L.: On testing of Charpy specimens using the one-point bend impact technique. Exp. Mech. 42, 247–252 (2002). doi: 10.1007/BF02410979 CrossRefGoogle Scholar
  7. 7.
    Mines, R.A.W., Ruiz, C.: The dynamic behavior of the instrumented Charpy-test. J. Phys. Colloq. 46, 187–196 (1985). doi: 10.1051/jphyscol:1985524 CrossRefGoogle Scholar
  8. 8.
    Bacon, C., Färm, J., Lataillade, J.L.: Dynamic fracture toughness determined from load-point displacement. Exp. Mech. 34, 217–222 (1994). doi: 10.1007/BF02319758 CrossRefGoogle Scholar
  9. 9.
    Zhou, F.C., Molinari, J.F., Li, Y.L.: Three-dimensional numerical simulations of dynamic fracture in silicon carbide reinforced aluminum. Eng. Fract. Mech. 71, 1357–1378 (2004). doi: 10.1016/S0013-7944(03)00168-1 CrossRefGoogle Scholar
  10. 10.
    Wosu, S.N., Hui, D., Dutta, P.K.: Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites. Eng. Fract. Mech. 72, 1531–1558 (2005). doi: 10.1016/j.engfracmech.2004.08.008 CrossRefGoogle Scholar
  11. 11.
    Jiang, F.C., Vecchio, K.S., Rohatgi, A.: Analysis of modified split Hopkinson pressure bar dynamic fracture test using an inertia model. Int. J. Fract. 126, 143–164 (2004). doi: 10.1023/B:FRAC.0000026363.05467.2b CrossRefzbMATHGoogle Scholar
  12. 12.
    Jiang, F.C., Vecchio, K.S.: Experimental investigation of dynamic effects in a two-bar/three-point bend fracture test. Rev. Sci. Instrum. 78, 063903 (2007). doi: 10.1063/1.2746630 CrossRefGoogle Scholar
  13. 13.
    Foster, J.T., Chen, W., Luk, V.K.: Dynamic crack initiation toughness of 4340 steel at constant loading rates. Eng. Fract. Mech. 78, 1264–1276 (2011). doi: 10.1016/j.engfracmech.2011.02.019 CrossRefGoogle Scholar
  14. 14.
    Yokoyama, T., Kishida, K.: A novel impact three-point bend test method for determining dynamic fracture-initiation toughness. Exp. Mech. 29, 188–194 (1989). doi: 10.1007/BF02321374 CrossRefGoogle Scholar
  15. 15.
    Yokoyama, T.: Determination of dynamic fracture-initiation toughness using a novel impact bend test procedure. ASME J. Press. Vessel Technol. 115, 389–397 (1993). doi: 10.1115/1.2929546 CrossRefGoogle Scholar
  16. 16.
    Jiang, F.C., Vecchio, K.S.: Fracture of Nitinol under quasi-static and dynamic loading. Metall. Mater. Trans. A 38, 2907–2915 (2007). doi: 10.1007/s11661-007-9349-5 CrossRefGoogle Scholar
  17. 17.
    Jiang, F.C., Vecchio, K.S.: Dynamic effects in Hopkinson bar four-point bend fracture. Metall. Mater. Trans. A 38, 2896–2905 (2007). doi: 10.1007/s11661-007-9301-8 CrossRefGoogle Scholar
  18. 18.
    Price, R.D., Jiang, F.C., Kulin, R.M., Vecchio, K.S.: Effects of ductile phase volume fraction on the mechanical properties of Ti–Al\(_{3}\)Ti metal-intermetallic laminate (MIL) composites. Mater. Sci. Eng. A 528, 3134–3146 (2011). doi: 10.1016/j.msea.2010.12.087 CrossRefGoogle Scholar
  19. 19.
    Kulin, R.M., Jiang, F.C., Vecchio, K.S.: Loading rate effects on R-curve behavior of cortical bone. Acta Biomater. 7, 724–732 (2011). doi: 10.1016/j.actbio.2010.09.027 CrossRefGoogle Scholar
  20. 20.
    Weerasooriya, T., Moy, P., Casem, D., Cheng, M., Chen, W.N.: A four-point bend technique to determine dynamic fracture toughness of ceramics. J. Am. Ceram. Soc. 89, 990–995 (2006). doi: 10.1111/j.1551-2916.2005.00896.x CrossRefGoogle Scholar
  21. 21.
    Böhme, W., Kalthoff, J.F.: The behavior of notched bend specimens in impact testing. Int. J. Fract. 20, 139–143 (1982). doi: 10.1007/BF01130620 CrossRefGoogle Scholar
  22. 22.
    Mirsky, I., Herrmann, G.: Axially symmetric motions of thick cylindrical shells. J. Appl. Mech. 25, 97–102 (1958)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Herrmann, G., Mirsky, I.: Three-dimensional and shell-theory analysis of axially symmetric motions of cylinders. J. Appl. Mech. 23, 563–568 (1956)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Geers, T.L.: Analysis of wave propagation in elastic cylindrical shells by the perturbation method. J. Appl. Mech. 39, 385–389 (1972). doi: 10.1115/1.3422689
  25. 25.
    Geers, T.L., Yen, C.L.: Inelastic response of an infinite cylindrical shell to transient acoustic waves. J. Appl. Mech. 56, 900–909 (1989). doi: 10.1115/1.3176189 CrossRefGoogle Scholar
  26. 26.
    Ren, L.B., Larson, M., Gama, B.A., Gillespie Jr., J.W.: Wave dispersion in cylindrical tubes: applications to Hopkinson pressure bar experimental techniques. In: ARL-CR-551 (2004)Google Scholar
  27. 27.
    Tanaka, K., Ogawa, K., Nojima, T., Kagatsusme, T., Matsumoto, K.: Hopkinson bar impact bending test. In: 19th Proceedings of the Joint Meetings of Material Research, pp. 145–146 (1975) (in Japanese) Google Scholar
  28. 28.
    Tanaka, K., Kagatsume, T.: Impact bending test on steel at low temperatures using a split Hopkinson bar. Bull. JSME 23, 1736–1744 (1980). doi: 10.1299/jsme1958.23.1736 CrossRefGoogle Scholar
  29. 29.
    Song, S.C., Tian, S.Y.: Dynamic tensile testing of materials using the hollow Hopkinson bars instead of the solid Hopkinson bars. Explos. Shock Waves 12, 62–67 (1992). (in Chinese) Google Scholar
  30. 30.
    Chen, W., Zhang, B., Forrestal, M.J.: A split Hopkinson bar for low-impedance materials. Exp. Mech. 39, 81–85 (1999). doi: 10.1007/BF02331109 CrossRefGoogle Scholar
  31. 31.
    Wada, H., Seika, M., Kennedy, T.C., Calder, C.A., Murase, K.: Investigation of loading rate and plate thickness effects on dynamic fracture toughness of PMMA. Eng. Fract. Mech. 54, 805–811 (1996). doi: 10.1016/0013-7944(95)00244-8 CrossRefGoogle Scholar
  32. 32.
    Guo, W.G., Li, Y.L., Liu, Y.Y.: Analytical and experimental determination of dynamic impact stress intensity factor for 40 Cr steel. Theor. Appl. Fract. Mech. 26, 29–34 (1997). doi: 10.1016/S0167-8442(96)00031-6
  33. 33.
    Loya, J.A., Villa, I., Fernández-Sáez, J., Navarro, C.: Determination of the dynamic stress intensity factor of a specimen under one-point bending from the measurement of the load–point displacement. J. Phys. IV 134, 827–832 (2006). doi: 10.1051/jp4:2006134127
  34. 34.
    Villa, I., Loya, J.A., Fernández-Sáez, J.: General expressions for the stress intensity factor of a one-point bend beam. Eng. Fract. Mech. 74, 373–385 (2007). doi: 10.1016/j.engfracmech.2006.05.020 CrossRefGoogle Scholar
  35. 35.
    Rokach, I.V.: Modal approach for processing one- and three-point bend test data for DSIF-time diagram determination. Part I—Theory. Fatigue Fract. Eng. Mater. Struct. 21, 1007–1014 (1998). doi: 10.1046/j.1460-2695.1998.00087.x CrossRefGoogle Scholar
  36. 36.
    Rokach, I.V.: Modal approach for processing one- and three-point bend test data for DSIF-time diagram determination. Part II—Calculations and results. Fatigue Fract. Eng. Mater. Struct. 21, 1015–1026 (1998). doi: 10.1046/j.1460-2695.1998.00088.x CrossRefGoogle Scholar
  37. 37.
    Rokach, I.V.: On the influence of one-point-bend impact test parameters on dynamic stress intensity factor variation. Mater. Sci. Eng. A 234–236, 838–841 (1997). doi: 10.1016/S0921-5093(97)00303-1 CrossRefGoogle Scholar
  38. 38.
    Rokach, I.V.: Comparison of simplified methods of dynamic stress intensity factors evaluation. J. Theor. Appl. Mech. 32, 203–212 (1994)Google Scholar
  39. 39.
    Rokach, I.V.: On the numerical evaluation of the anvil force for accurate dynamic stress intensity factor determination. Eng. Fract. Mech. 70, 2059–2074 (2003). doi: 10.1016/S0013-7944(02)00256-4 CrossRefGoogle Scholar
  40. 40.
    Chen, Y., Clausen, A.H., Hopperstad, O.S., Langseth, M.: Application of a split-Hopkinson tension bar in a mutual assessment of experimental tests and numerical predictions. Int. J. Impact Eng. 38, 824–836 (2011). doi: 10.1016/j.ijimpeng.2011.05.002 CrossRefGoogle Scholar
  41. 41.
    Kusaka, T., Kurokawa, T., Hojo, M., Ochiai, S.: Evaluation of mode II interlaminar fracture toughness of composite laminates under impact loading. Key Eng. Mater. 141–143, 477–500 (1998). doi: 10.4028/www.scientific.net/KEM.141-143.477 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • G. Zou
    • 1
  • X. Shen
    • 1
  • C. Guo
    • 2
  • K. S. Vecchio
    • 3
  • F. Jiang
    • 2
  1. 1.College of Aerospace and Civil EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  3. 3.Department of NanoEngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations