Skip to main content
Log in

Non-equilibrium theory employing enthalpy-based equation of state for binary solid and porous mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A generalized enthalpy-based equation of state, which includes thermal electron excitations and non-equilibrium thermal energies, is formulated for binary solid and porous mixtures. Our approach gives rise to an extra contribution to mixture volume, in addition to those corresponding to average mixture parameters. This excess term involves the difference of thermal enthalpies of the two components, which depend on their individual temperatures. We propose to use the Hugoniot of the components to compute non-equilibrium temperatures in the mixture. These are then compared with the average temperature obtained from the mixture Hugoniot, thereby giving an estimate of non-equilibrium effects. The Birch–Murnaghan model for the zero-temperature isotherm and a linear thermal model are then used for applying the method to several mixtures, including one porous case. Comparison with experimental data on the pressure–volume Hugoniot and shock speed versus particle speed shows good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Trunin, R.F.: Shock Compression of Condensed Materials. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  2. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Zeldovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol -II. Academic, New York (1967)

    Google Scholar 

  4. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13, 3002–3024 (2001)

    Article  MATH  Google Scholar 

  5. Duvall, G.E., Taylor, S.M.: Shock parameters in a two component mixture. J. Compos. Mater. 5(2), 130–139 (1971)

    Article  Google Scholar 

  6. Krueger, B.R., Vreeland, T.: A Hugoniot theory for solid and powder mixtures. J. Appl. Phys. 69(2), 710–716 (1991)

    Article  Google Scholar 

  7. Gavrilyuk, S.L., Saurel, R.: Rankine–Hugoniot relations for shocks in heterogeneous mixtures. J. Fluid Mech. 575(1), 495–507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dremin, A.N., Karpukhin, I.A.: Method of determination of shock adiabat of the dispersed substances. Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 1(3), 184–188 (1960). (in Russian)

  9. Alekseev, YuF, Al’tshuler, L.V., Krupnikova, V.P.: Shock compression of two-component paraffin–tungsten mixtures. J. Appl. Mech. Tech. Phys. 12(4), 624–627 (1971)

    Article  Google Scholar 

  10. Saurel, R., Le Metayer, O., Massoni, J., Gavrilyuk, S.: Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves 16(3), 209–232 (2007)

    Article  MATH  Google Scholar 

  11. McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N., Carter, W.J.: The Equation of State of Solids from Shock Wave Studies. In: Kinslow, R. (ed.) High Velocity Impact Phenomena, pp. 293–417. Academic, New York (1970)

  12. Batsanov, S.S.: Effects of Explosions on Materials: Modification and Synthesis Under High-Pressure Shock Compression. Springer, Berlin (1994)

    Book  Google Scholar 

  13. Petel, O.E., Jette, F.X.: Comparison of methods for calculating the shock hugoniot of mixtures. Shock Waves 20, 73–83 (2010)

    Article  MATH  Google Scholar 

  14. Zhang, X.F., Qiao, L., Shi, A.S., Zhang, J., Guan, Z.W.: A cold energy mixture theory for the equation of state in solid and porous metal mixtures. J. Appl. Phys. 110(1), 013506-1–013506-10 (2011)

    Google Scholar 

  15. Zhang, X.F., Shi, A.S., Zhang, J., Qiao, L., He, Y., Guan, Z.W.: Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression. J. Appl. Phys. 111(12), 123501-1–123501-9 (2012)

    Google Scholar 

  16. Rice, M.H., Walsh, J.M.: Equation of state of water to 250 kilobars. J. Chem. Phys. 26, 824–830 (1957)

  17. Wu, Q., Jing, F.: Thermodynamic equation of state and application to Hugoniot predictions for porous materials. J. Appl. Phys. 80(8), 4343–4349 (1996)

    Article  Google Scholar 

  18. Boshoff-Mostert, L., Viljoen, H.J.: Comparative study of analytical methods for Hugoniot curves of porous materials. J. Appl. Phys. 86(3), 1245–1254 (1999)

    Article  Google Scholar 

  19. Nayak, B., Menon, S.V.G.: Explicit accounting of electronic effects on the Hugoniot of porous materials. J. Appl. Phys. 119(12), 125901–125907 (2016)

    Article  Google Scholar 

  20. Kormer, S.B., Funtikov, A.I., Urlin, V.D., Kolesnikova, A.N.: Dynamic compression of porous metals and the equation of state with variable specific heat at high temperatures. Sov. Phys. JETP 15(3), 477–488 (1962)

    Google Scholar 

  21. Carroll, M.M., Holt, A.C.: Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 43(4), 1626–1636 (1972)

    Article  Google Scholar 

  22. Walsh, J.M., Christian, R.H.: Equation of state of metals from shock wave measurements. Phys. Rev. 97(6), 1544–1556 (1955)

    Article  Google Scholar 

  23. Marsh, S.P.: LASL Shock Hugoniot Data. University of California Press, California (1980)

    Google Scholar 

  24. Bushman, A.V., Lomonosov, I.V., Khishchenko, K. V.: Shock wave data base. (2004). http://teos.ficp.ac.ru/rusbank. Accessed 25 Mar 2017

  25. Birch, F.: Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 57(2), 227–286 (1952)

    Article  Google Scholar 

  26. Vinet, P., Smith, J.R., Ferrante, J., Rose, J.H.: Temperature effects on the universal equation of state of solids. Phys. Rev. B 35(4), 1945–1953 (1987)

    Article  Google Scholar 

  27. Vinet, P., Rose, J.H., Ferrante, J., Smith, J.R.: Universal features of the equation of state of solids. J. Phys. Condens. Matter 1(11), 1941–1963 (1989)

    Article  Google Scholar 

  28. Hama, J., Suito, K.: The search for a universal equation of state correct up to very high pressures. J. Phys. Condens. Matter 8(1), 67–81 (1996)

    Article  Google Scholar 

  29. Young, D.A., Corey, E.M.: A new global equation of state for hot, dense matter. J. Appl. Phys. 78(6), 3748–3755 (1995)

    Article  Google Scholar 

  30. Burakovsky, L., Preston, D.L.: Analytic model of the Grüneisen parameter for all densities. J. Phys. Chem. Solids 65(8–9), 1581–1587 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers and editor of Shock Waves for critical reviews and suggestions to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. G. Menon.

Additional information

Communicated by D. Ranjan and A. Higgins.

S. V. G. Menon retired from Bhabha Atomic Research Centre, Mumbai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, B., Menon, S.V.G. Non-equilibrium theory employing enthalpy-based equation of state for binary solid and porous mixtures. Shock Waves 28, 141–151 (2018). https://doi.org/10.1007/s00193-017-0717-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0717-9

Keywords

Navigation