Skip to main content
Log in

Evolution of Walrasian equilibrium in an exchange economy

  • Regular Article
  • Published:
Journal of Evolutionary Economics Aims and scope Submit manuscript

Abstract

We study the stochastic stability of a dynamic trading process in an exchange economy. We use a simplified version of a trading model à la Shapley and Shubik (J Polit Econ 85:937–968, 1977). Two types of agents equipped with Leontief preferences trade goods in markets by offering endowments, and actual trades occur at market clearing prices. Better behavior tends to spread through the same type of agents by imitation, and agents also make mistakes occasionally. We provide a sufficient condition for the perturbed dynamic process to have a unique stochastically stable state that is a Walrasian equilibrium allocation. In this sense, we give a rationale for Walrasian behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For cooperative approaches, see Debreu and Scarf (1963) and Aumann (1964), and for non-cooperative approaches, see Gabszewicz and Vial (1972).

  2. Chatterji and Ghosal (2004) also borrows a similar model for studying the local stability of competitive equilibria.

  3. Namely, any \((( b^i )_{i\in {\mathcal I}_{I}}, (q^i )_{i \in {\mathcal I}_{II}})\) such that there is a pair \(b,q\geqq 0\) such that b = K − q, and b i = b for all \(i\in{\mathcal I}_{I}\) and q i = q for all \(i\in{\mathcal I}_{II}\).

  4. Recently, this trading mechanism was used by Chatterji and Ghosal (2004) for a study of the stability of competitive equilibria.

  5. This ensures that the price is well defined by Eq. 10 below.

  6. M0(z, z′) is the probability of a transition from z to z′.

  7. I.e., i) if z ∈ Λ, and \(z'\not\in \Lambda\), then M 0(z, z′) = 0; ii) if z, z′ ∈ Λ, then there exists a k such that \(M^{(k)}_0(z,z')>0\).

  8. Cf. Vega-Redondo (1997), p. 379, proof of Proposition 1.

  9. When A = 1 or \(A\geqq 2\), we can relax the assumption that δ > 0 is small. See Footnotes 17 and 20 below.

  10. Of course, P I (b, b′) = 1 when b = b′; and P II (q, q′) = 1 when q = q′.

  11. For “z b,q|b” we use “|” to indicate b′ ∈ S. For “z b,q||q”, we use “||” to indicate q′ ∈ T.

  12. We cannot use Lemmas 1 and 2 to move states in Z * in general because, when n < A/(A − 1), we have (1/A)q n  < K − b n − 1 and (1/A)b n  > K − q n − 1. In this case, Lemmas 1 and 2 do not apply.

  13. When n = 1, we understand \(b_{n-1}=\hat b\), and \(q_{n-1}=\hat q\). For \(p^+_I\) and \(p^+_{II}\), we understand that they are defined over those n where \(n+1\leqq \bar n\).

  14. When \(A\geqq 2\), we have \(p^-_I > b_n/q_n\) for even not-necessarily-small δ, as can be verified by Eq. 29. At the same time, by definition of n **, we have n ** = 0 when \(A\geqq 2\).

  15. Cf. Proof of Lemma 3b.

  16. Throughout this proof, when n = 1, we understand b n − 1 and \(\widetilde b_{n-1}\) as \(\hat b\), and q n − 1 and \(\widetilde q_{n-1}\) as \(\hat q\).

  17. This proof uses Lemmas 1 and 2, and Remarks 2 and 4. Lemmas 1 and 2 and Remark 4 do not require δ to be small. For \(A\geqq 2\), the assertion in Remark 2 holds even when δ is not necessarily small (see Footnote 14). Therefore, this proof of Theorem 1 for \(A\geqq 2\) does not require δ to be small.

  18. For this general context, we have some examples of fixed parameters K, δ, A, m for which \(\mu^*(b^*,q^*)=\mu^*(\widetilde b^*,\widetilde q^*)=1/2\). One such set of parameters are K = 42, δ = 1, A = 1/20, and m = 20.

  19. Proofs of all lemmas are given in Appendix II.

  20. This proof uses Lemmas 1, 2, and 5′, and Claim 1′ which in turn uses Lemmas 3′ and 4′. Since Lemmas 1, 2, 3′, 4′ and 5′ do not require δ to be small, so neither does this proof.

References

  • Aumann GJ (1964) Markets with a continuum of traders. Econometrica 32:39–50

    Article  Google Scholar 

  • Ben-Shoham A, Serrano R, Volij O (2004) The evolution of exchange. J Econ Theory 114:310–328

    Article  Google Scholar 

  • Chatterji S, Ghosal S (2004) Local coordination and market equilibria. J Econ Theory 114:255–279

    Article  Google Scholar 

  • Debreu G, Scarf H (1963) A limit theorem on the core of an economy. Int Econ Rev 4:235–246

    Article  Google Scholar 

  • Freidlin MI, Wentzell AD (1984) Random perturbations of dynamical systems. Springer-Verlag, New York

    Google Scholar 

  • Gabszewicz JJ, Vial U-P (1972) Oligopoly á la cournot in a general equilibrium analysis. J Econ Theory 4:281–400

    Google Scholar 

  • Hahn F (1982) Stability. In: Arrow KJ, Intriligator MD (eds) Handbook of mathematical economics, vol II, chapter 15. North-Holland Publishing Company, New York

    Google Scholar 

  • Jackson M, Watts A (2002) On the formation of interaction networks in social coordination games. Games Econom Behav 41:265–291

    Article  Google Scholar 

  • Kandori M, Mailath G, Rob R (1993) Learning, mutations, and long-run equilibria in games. Econometrica 61:29–56

    Article  Google Scholar 

  • Kandori M, Serrano R, Volij O (2008) Decentralized trade, random utility and the evolution of social welfare. J Econ Theory 140:328–338

    Article  Google Scholar 

  • Shapley L, Shubik M (1977) Trade using one commodity as a means of payment. J Polit Econ 85:937–968

    Article  Google Scholar 

  • Temzelides T (1997) Evolution, coordination, and banking panics. J Monet Econ 40:163–183

    Article  Google Scholar 

  • Vega-Redondo F (1997) The evolution of Walrasian behavior. Econometrica 65:375–384

    Article  Google Scholar 

  • Young P (1993a) Evolution of conventions. Econometrica 61:57–84

    Article  Google Scholar 

  • Young P (1993b) An evolution model of bargaining. J Econ Theory 59:145–168

    Article  Google Scholar 

  • Young P (1998) Individual strategy and social structure: an evolutionary theory of institutions. Princeton University Press, Princeton

    Google Scholar 

Download references

Acknowledgements

We thank the referee for valuable suggestions. We are grateful to Man-Wah Cheung and Ronald A. Edwards for helpful comments. We appreciate helpful comments from participants at the 2007 Australasian Meeting of the Econometric Society. The work described in this paper was substantially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 4612/05H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmin Kim.

Appendices

Appendix I: Proof of Theorem 1 for A = 1

1.1 AI.1 Transition among states in \(\bar Z\) when A = 1

1.1.1 AI.1.1 Moving states \(z^{b_n,q_n}\)

When A = 1, the two offer curves OC I and OC II coincides with the diagonal.

Consider any \(n\in\{1,\cdots,\bar n\}\). We now show that:

$$ p^+_I=p^-_{II}>{b_n\over q_n}> p^-_{I}=p^-_{II}. $$
(56)

First, since A = 1, by Eqs. 26, 6, and 19 we have: \( p^-_{I} = p^-_{II}\), and \(p^+_{I} = p^+_{II}\). (This is slightly different from Eq. 27.) Second, from Eq. 26 we still have Eqs. 28 and 29. Third, as \(n\leqq \bar n=\hat n-1=(N/2)-1\) (where N is given in Eq. 7), we have K > 2, and so from Eq. 29 we have \(p^-_I < b_n/q_n\).

Therefore, we need to consider the least number of mutations to achieve \(p^-_I\) and \(p^+_{II}\). We have the minimization problems (MP1) and (MP2) defined in Eqs. 34 and 35, respectively.Footnote 19

Lemma 3′

Let A = 1, then:

  1. (a)

    The solution of (MP1) is \((\alpha,\beta)=(0,\beta^-_{I})\), where:

    $$ \beta^-_I ={(K-b_n)b_n-q_nb_{n-1} \over (\bar q-q_n) b_{n-1 }}. $$
    (57)
  2. (b)

    The solution of (MP2) is \((\alpha,\beta)=(0,\beta^+_{II})\), where:

    $$ \beta^+_{II}={(K-q_n)q_n-b_{n}q_{n+1} \over (K-q_n)(q_n-\underline{q})}. $$
    (58)

We compare the terms \(\beta^-_I\) and \(\beta^+_{II}\) in the following lemma:

Lemma 4′

Let A = 1. Then:

  1. (a)

    \(\beta^-_I<\beta^+_{II}\) for all \(n\in\{1,\cdots,\bar n\}\) ,

  2. (b)

    \(\beta^-_I\) is strictly decreasing in n for all \(n\in\{1,\cdots,\bar n\}\) .

We next focus on \(\beta^-_I\).

Claim 1′

Suppose A = 1.

  1. (a)

    For any z ∈ Z, if \((1/2)\|z-z^{b_n,q_n}\|<\beta^-_I m\), then Eq. 38 holds.

  2. (b)

    Let z ∈ Z be such that z(bn − 1) = 1, z(b n ) = m − 1, \(\beta^-_I m\leqq z(\bar q)<\beta^-_I m+1\), and \(z(q_n)=m-z(\bar b)\). Then Eq. 39 holds.

Claim 1′ can be proved in the same manner as Claim 1, and so we omit the proof. Also, Claim 1′ gives similar results as discussed in Remark 3.

1.1.2 AI.1.2 Moving states \(z^{\widetilde b_n,\widetilde q_n}\)

We use the same \(\widetilde p^-_I\), \(\widetilde p^+_I\), \(\widetilde p^-_{II}\) and \(\widetilde p^+_{II}\) given in Section 3.5.4. We focus on \({\widetilde{p}}^-_{II}\) and \({\widetilde{p}}^+_I\), and have the minimization problems (\(\widetilde{{\rm MP}_{1}}\)) and (\(\widetilde {\rm{MP}_2}\)) defined in Eqs. 42 and 43. Then the solutions of (\(\widetilde {\rm{MP}_1}\)) and (\(\widetilde {\rm{MP}_2}\)) are \(({\widetilde{\alpha}}^-_{II},0)\) and \(({\widetilde{\alpha}}^+_I,0)\) respectively, where \({\widetilde{\alpha}}^-_{II}=\beta^-_I\), and \({\widetilde{\alpha}}^+_I=\beta^+_{II}\).

1.1.3 AI.1.3 Least number of mutation for moving state \(z^{\hat b,\hat q}\)

We consider the critical prices \(p^L_I\), \(p^R_I\), \(p^L_{II}\), and \(p^R_{II}\) given in Eq. 45. As A = 1, we have:

$$ p^L_{I}= p^L_{II}>{\hat b\over \hat q}>p^R_{I}= p^R_{II}. $$
(59)

We focus on \(p^L_{II}\) and \(p^R_I\), and have minimization problems (MP L ) and (MP R ) given in Eqs. 48 and 49. Their solutions are \((0,\beta^L_{II})\) and \(( \alpha^R_{I},0)\), respectively, and \(\beta^L_{II}=\alpha^R_I\).

Lemma 5′

Let A = 1. Then \(\beta^L_{II}>\beta^-_I|_{n=1}\)

As in Remark 3a, leaving the basin of attraction of \(z^{\hat b,\hat q}\) requires the number of mutations to be at least \(\beta^L_{II}m\) (\(=\alpha^R_Im\)).

1.2 AI.2 Proof of Theorem 1 when A = 1

The main strategy of the proof is almost identical to the one used for the case of A > 1. We will follow the same steps of the proof with some minor modifications.

(Step 1)

  1. (Stage A)

    When A = 1, the two offer curves OC I and OC II coincide with the diagonal, on which the point \((\hat b,\hat q)\) is in the middle, and the points (b n ,q n ) and \((\widetilde b_n,\widetilde q_n)\) are in the left and right side of it, respectively. Notice that, when A = 1, each (b n ,q n ) satisfies Eq. 23 and each \((\widetilde b_n,\widetilde q_n)\) satisfies Eq. 24 with equalities. Thus, the arguments in Cases A1 through A4 in the proof for the case of A > 1 are still valid.

  2. (Stage B)

    Now we will modify Cases B1 and B2 as follows:

    1. (Case B1′)

      Consider the set \(\{(b_n,q_n):n=1,\cdots,\bar n\}\). For each (b n ,q n ), we choose the state z ∈ Z where z(b n − 1) = 1, \(\beta^-_Im\leqq z({\underline{b}})<\beta^-_I m+1\), \(z(b_n)=m-z({\underline{b}})-1\), and z(q n) = m.

      We then choose the path \((z^{b_n,q_n}\to z\to z^{b_{n-1},q_n})\). We have \(r(z^{b_n,q_n}\to z\to z^{b_{n-1},q_n})< \beta^-_I+2\) by Claim 1′.

    2. (Case B2′)

      Consider the set \(\{(\widetilde b_n,\widetilde q_n):n=1,\cdots,\bar n\}\). For each \((\widetilde b_n,\widetilde q_n)\), we choose the state z ∈ Z where \(z(\widetilde q_{n-1})=1\), \(\widetilde\alpha^-_{II}m\leqq z({\underline{q}})<\widetilde\alpha^-_{II}m+1\), \(z(\widetilde q_n)=m-z({\underline{q}})-1\), and \(z(\widetilde b^n)=m\). We then choose the path \((z^{\widetilde b_n,\widetilde q_n}\to z\to z^{\widetilde b_{n },\widetilde q_{n-1}})\). We have \(r(z^{\widetilde b_n,\widetilde q_n}\to z\to z^{\widetilde b_{n },\widetilde q_{n-1}})< \widetilde\alpha^-_{II}+2\) by Claim 1′.

    With these two stages, we complete the construction by choosing the edges for transient states as discussed at the end of Step 1 of the previous proof of Theorem 1. Thus, we have constructed a \(\hat z\)-tree, h.

(Step 2)  The resistance of h is

$$ r(h) < \sum\limits_{n=1}^{\bar n}[2(\beta^-_I|_n m+2)]+\#(S)\times\#(T)-2\bar n-1. $$
(60)

Now, we consider any \(z'\not=z\) and any tree z′-tree, h′. We must leave all monomorphic states, or all except one, which cannot be \(\hat z\). Therefore, we can at most save one of the terms \( \beta^-_I|_{n}\) and \(\widetilde \alpha^-_{II}|_n\). The maximum of these terms is \( \beta^-_I|_{n=1}<\beta^L_{II}\) (by Lemma 5′). Thus, the resistance

$$ \begin{array}{rll} r(h') & \geqq & \sum\limits_{n=1}^{\bar n} [2 \beta^-_I|_n m]+(\beta^L_{II}-\beta^-_I|_{n=1})m +\#(S)\times\#(T)-2\bar n -1\\ &> & r(h) - 4 n^{**} + (\beta^L_{II}-\beta^-_I|_{n=1})m. \end{array} $$
(61)

Therefore, as \((\beta^L_{II}-\beta^-_I|_{n=1})>0\), for all large m, we have r(h′) > r(h).

Hence state \(\hat z\) is the unique state in C * given in Fact 1. Therefore, we have μ *(z) = 1. This proves Theorem 1 when A = 1.Footnote 20

Appendix II: Proof of Lemmas

Proof of Lemma 1

By symmetry, it suffices to prove Part a.

At z b,q, the price p = b/q > b/A(K − b′) = P I (b, b′). The price p′ of z b,q|b is p′ = (b′ + (m − 1)b)/q. Therefore, when m is sufficiently large, we have p′ > p I (b, b′), so U(b′; z b,q|b) > U(b, z b,q|b).□

Proof of Lemma 2

By symmetry, it suffices to prove Part a.

Since \(b'\geqq \hat b=AK/(A+1)\), we have \(b'/[A(K-b')]\geqq 1/A\). Then critical price \(P_I(b,b')=b'/[A(K-b)] >b'/[A(K-b')]\geqq 1/A\). Therefore, (b − b′)/P I (b,b′) < A[b − b′]. We can write P I (b, b′) = b/[A(K − b) + (b − b′)/P I (b, b′)], so we have: \(P_I(b,b')>b/[A(K-b')]\geqq b/q\). Hence, for all large m, we have P I (b, b′) > p′ where p′ = (b′ + (m − 1)b)/q. Thus, U(b′; z b, q|b) > U(b,z b,q|b).□

Proof of Lemmas 3b and 3′b

We consider any \(A\geqq 1\). By using the constraint equation in Eq. 35, we can express β as a function of α. Then checking the derivative of α + β with respect to α, we find out that (MP2) has the solution where:

$$ \alpha =0, \,\rm{ if }\,p^+_{II}>{\bar b -b_n\over q_n-{\underline{q}}} \qquad \rm{ and }\qquad \beta = 0, \,\rm{ if }\,p^+_{II}<{\bar b -b_n\over q_n-{\underline{q}}}. $$
(62)

Using Eqs. 26, 19, 7 and 8, by calculation we have:

$$ p^+_{II}>{\bar b-b_n\over q_n-\underline{q}} \qquad\Leftrightarrow\qquad A\left[{K\over 1+A}+n\delta\right]>{K\over 1+A}-(n+1)\delta. $$
(63)

As the r.h.s of Eq. 63 holds, by Eq. 62 the solution of (MP2) has α = 0. Hence, by the constraint (Eq. 35), we obtain the solution \(\beta=\beta^+_{II}\) as given in Lemmas 3b and 3′b for the cases of A > 1 and A = 1 respectively. □

Proof of Lemmas 3a and 3′a

We consider any \(A\geqq 1\). By using Eq. 34, it follows that the solution of (MP1) is such that:

$$ \alpha =0, \,\rm{ if }\,p^-_{I}>{b_n-\underline{b}\over \bar b-q_n} \qquad\rm{ and }\qquad \beta = 0, \,\rm{ if }\, p^-_{I}<{b_n-\underline{b}\over \bar b-q_n}. $$
(64)

Using Eqs. 26, 19, 7 and 8, by calculation we have:

$$ \,p^-_{I}\, >\,(<)\, {b_n-\underline{b}\over \bar b-q_n} \qquad \Leftrightarrow \qquad A\left[{K\over 1+A}-n\delta\right]\, <\,(>)\, {K\over 1+A}+(n-1)\delta. $$
(65)

Suppose A = 1. As K/2 −  < K/2 + (n − 1)δ, we have α = 0, so by the constraint in Eq. 34 we have \(\beta=\beta^-_I\) as claimed in Lemma 3′a. (For this proof of Lemma 3′a, we do not require δ to be small.)

Suppose A > 1, we have AK/(1 + A) > K/(1 + A). Therefore, for all small δ we have β = 0. So by the constraint in Eq. 34 we have \(\alpha=\alpha^-_I\), as claimed in Lemma 3a. □

Proof of Lemma 4

We express

$$ \alpha^-_I={T^-_1-T^-_2\over T^-_3}, \qquad \rm{ and}\qquad \beta^+_{II}={T^+_1-T^+_2\over T^+_3}, $$
(66)

where

$$ \begin{array}{rll} T^-_1 &=& A[K-(1+A)n\delta][AK+(1+A)n\delta] , \\ T^-_2 &=& [AK+(1+A)(n-1)\delta][AK-(1+A)n\delta] ,\\ T^-_3 &=&A[K-(1+A)n\delta][AK+(1+A)(n-1)\delta] ,\\ T^+_1 &=& A [K+(1+A)n\delta][AK-(1+A)n\delta] , \\ T^+_2 &=& [AK+(1+A)n\delta][AK-(1+A)(n+1)\delta] ,\\ T^+_3 &=& A[K+(1+A)n\delta][AK-(1+A)(n+1)\delta]. \end{array} $$
(67)

(Proof of Part a)

Note that:

$$ \begin{array}{rll} {d[T^-_1-T^-_2]\over d\delta}|_{\delta=0}&=&AK(1+A)[(1-A)n+1] , \rm{and }\\ {d[T^+_1-T^+_2]\over d\delta}|_{\delta=0}&=&AK(1+A)[(A-1)n+1]. \end{array} $$
(68)

So \((d[T^-_1-T^-_2]/ d\delta)|_{\delta=0}<(d[T^+_1-T^+_2]/ d\delta)|_{\delta=0}\). Since \((T^-_1-T^-_2)|_{\delta=0}=0=(T^+_1-T^+_2)|_{\delta=0}\) and \(T^-_3|_{\delta=0}=T^+_3|_{\delta=0}\), we have:

$$ {d \alpha^-_I\over d\delta}|_{\delta=0}<{d \beta^+_{II}\over d\delta}|_{\delta=0}. $$
(69)

Then \(\alpha^-_I<\beta^+_{II}\) for all small δ.

(Proof of Part b)

Note that:

$$ \begin{array}{rll} {d T^-_1\over dn} &=&-A(1+A)(A-1)K\delta , \\ {d T^-_2\over dn} &=&-(1+A)(1+A)(2n-1)\delta\delta \rm{ and} \\ {d T^-_3\over dn} &=&-A(1+A)\delta[(A-1)K+(1+A)(2n-1)\delta] . \end{array} $$
(70)

When δ > 0 is sufficiently small, we disregard terms involving δ 2. Then:

$$ \begin{array}{rll} {d T^-_1\over dn} - {d T^-_2\over dn} &\simeq& -A(1+A)(A-1)K\delta <0 \rm{ and}\\ {d T^-_3\over dn} &\simeq& -A(1+A)(A-1)K\delta<0 . \end{array} $$
(71)

Therefore,

$$ {d\alpha^-_I\over d n}\simeq -A(1+A)(A-1)K\delta\left[{T^-_3-(T_1-T_2) \over (T^-_3)^2}\right]. $$
(72)

The term \([T^-_3-(T_1-T_2)]/(T^-_3)^2 \) converges to \(1/T^-_3>0\) as δ converges to 0. Then we have \((d\alpha^-_I)/ (d n) <0\) for all small δ > 0. Thus, \(\alpha^-_I\) is strictly decreasing in n. □

Proof of Lemma 4′

Since A = 1, we have:

$$\begin{array}{rll} \beta^-_I &=& { \left[\left({K\over 2}\right)-n\delta\right]\left[\left({K\over 2}\right)+ n\delta\right]-\left[\left({K\over 2}\right)-n\delta\right]\left[\left({K\over 2}\right) +\left(n-1\right)\delta\right]\over \left[\left({K\over 2}\right)+\left(n-1\right)\delta\right]\left[\left({K\over 2}\right) +\left(n-1\right)\delta\right]} ={T_1\over T_2} \rm{ and}\\ \beta^+_{II}&=&{ \left[\left({K\over 2}\right)-n\delta\right]\left[\left({K\over 2}\right)+n\delta\right] -\left[\left({K\over 2}\right)-\left(n+1\right)\delta\right]\left[\left({K\over 2}\right) +n\delta\right]\over \left[\left({K\over 2}\right)+n\delta\right]\left[\left({K\over 2}\right) -\left(n+1\right)\delta\right] }={T_1'\over T_2'}, \end{array} $$
(73)

where:

$$\begin{array}{rll} T_1 &=& \left({K\over 2}\right)\delta -n\delta\delta ,\\ T_2 &=& \left({K\over 2}\right)\left({K\over 2}\right)+\left({K\over 2}\right)2(n-1)\delta +(n-1)(n-1)\delta\delta ,\\ T_1'&=& \left({K\over 2}\right)\delta +n\delta\delta \rm{ and}\\ T_2' &=& \left({K\over 2}\right)\left({K\over 2}\right)-\left({K\over 2}\right)\delta - n (n+1)\delta\delta. \end{array} $$
(74)

(Proof of Part a)

Clearly, We have: T 1 < T 1′ and T 2 > T 2′, so \(\beta^-_I<\beta^+_{II}\).

(Proof of Part b)

As d T 1/d n < 0 and dT 2/d n > 0, \(\beta^-_I\) is strictly decreasing in n. □

Proof of Lemma 5

Note that by Eqs. 50, 66 and 67, we have:

$$ \begin{array}{rll} \beta^L_{II} & =& {(A+1)\delta \over AK-(A+1)\delta } \rm{ and} \\ \alpha^-_I|_{n=1}& =&{A[K-(1+A)\delta][AK+(1+A)\delta] - AK[AK-(1+A)\delta]\over A[K-(1+A)\delta]AK}. \end{array} $$
(75)

Therefore,

$$\begin{array}{rll} {d\beta^L_{II}\over d\delta}|_{\delta=0} & =& {(1+AK) (AK+1) \over (AK)(AK) } \rm{ and}\\ { d \alpha^-_I|_{n=1} \over d\delta}|_{\delta=0}& =&{ (1+A)(2-A) \over AK}. \end{array} $$
(76)

Since A > 1, we have (AK + 1)/(AK) > 1 > 2 − A, so \((d\beta^L_{II}/ d\delta )|_{\delta=0}> (d \alpha^-_I|_{n=1} / d\delta) |_{\delta=0}\). □

Proof of Lemma 5′

As A = 1, by Eqs. 50 and 73 we have:

$$ \beta^L_{II}={\delta\over K/2-\delta} \qquad\rm{ and}\qquad \beta^-_I|_{n=1}={\delta-2\delta^2/K\over K/2.} $$
(77)

Thus, \(\beta^L_{II}> \beta^-_I|_{n=1}\).□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Wong, KC. Evolution of Walrasian equilibrium in an exchange economy. J Evol Econ 21, 619–647 (2011). https://doi.org/10.1007/s00191-011-0220-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00191-011-0220-x

Keywords

JEL Classification

Navigation