Skip to main content
Log in

Modeling the VLBI delay for Earth satellites

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Very-long-baseline interferometry (VLBI) observations of satellites orbiting the Earth and emitting an artificial radio signal have the potential of becoming an important technique for improving the frame ties between celestial and terrestrial reference frames. Modeling the delay of the signal reception at one station with respect to the other station of a baseline is a fundamental step for correlation and parameter estimation. The near-field VLBI delay models developed so far include numerical computation, which may become expensive in terms of computation time. This applies especially when partial derivatives are to be computed, which is the normal case for least squares adjustments. Furthermore, all the models are formulated in the barycentric celestial reference system requiring large numbers. Here we present an analytical expression for the VLBI delay for the special case of satellites orbiting the Earth, observed by ground-based radio telescopes. We analytically solve the light time equation for each signal propagation path from the source to receiver one and to receiver two under the simplification of linearizing the trajectory of the satellite. By approximating the motion of the Earth as uniform during the short signal travel times we are able to work in the geocentric celestial reference system. We investigate differences between numerical and analytical solutions by simulating VLBI observations of Earth satellites. These tests reveal that delays computed with the analytical formula are consistent with those computed with the numerical solution below the detection level of VLBI but at less computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Differential one-way ranging.

  2. The gravitational delay for a near-field target has never exceeded 1 ps in the tests that we made, and changes in the gravitational delay can be assumed to be minute during the time scales of signal propagation. As a consequence, we will treat gravitational delay as a constant which is added to the signal propagation time in each signal propagation path, and which can be computed, e.g., using Eq. (14) in Duev et al. (2012).

  3. Please note that for simplicity the linearization presented in Appendix A takes as anchor points for the linearization the positions of the satellite and station 2 at time \(t_1\).

References

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  • Bar-Sever Y, Haines B, Wu S (2009) The geodetic reference antenna in space (GRASP) mission concept. EGU Gen Assembl Conf Abstr 11:1645

    Google Scholar 

  • Biancale R, Pollet A, Coulot D, & Mandea M (2016) E-GRASP/Eratosthenes: a mission proposal for millimetric TRF realization. In: EGU general assembly geophysical research abstracts, Vol. 19, EGU2017-8752, 2017

  • Duev DA, Molera Calvés G, Pogrebenko SV, Gurvits LI, Cimó G, Bocanegra Bahamon T (2012) Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron Astrophys 541:A43. https://doi.org/10.1051/0004-6361/201218885

    Article  Google Scholar 

  • Fey AL, Gordon D, Jacobs CS et al (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):16. https://doi.org/10.1088/0004-6256/150/2/58

    Article  Google Scholar 

  • Fitzpatrick R (2012) An introduction to celestial mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Haas R, Halsig S, Han S, Iddink A, Jaron F, La Porta L, Lovell J, Neidhardt A, Nothnagel A, Plötz C, Tang G, Zhang Z (2017) Observing the Chang’E-3 Lander with VLBI (OCEL). In: Proceedings of the first international workshop on VLBI observations of near-field targets, October 5–6, 2016, A. Nothnagel and F. Jaron (eds.), Schriftenreihe des Inst. f. Geodäsie u. Geoinformation, Vol. 54, ISSN 1864-1113, Bonn, 41-64

  • Kaplan GH (2005) The IAU resolutions on astronomical reference systems, time scales, and earth rotation models: explanation and implementation. USNO Circular 179

  • Klioner SA (1991) General relativistic model of VLBI observables. In: Geodetic VLBI: monitoring global change. Proceedings of the AGU chapman conference held April 22–26, 1991, in Washington, D. C., USA. NOAA Technical Report NOS 137 NGS49. William E. Carter from the Laboratory for Geosciences, Convenor. Published by the U. S. Department of Commerce and the National Oceanic and Atmospheric Administration, National Ocean Service, 1991, p.188

  • Moyer TD (2000) Formulation for observed and computed values of deep space 4 network data types for navigation. JPL Monograph 2 (JPL Publication 00-7). This is published from JPL deep space communications and navigation series, Wiley, Hoboken, ISBN 0-471-44535-5

  • Nothnagel A, Jaron F (2017) In: Proceedings of the first international workshop on VLBI observations of near-field targets, October 5–6, 2016, A. Nothnagel and F. Jaron (eds.), Schriftenreihe des Inst. f. Geodäsie u. Geoinformation, Vol. 54, ISSN 1864-1113, Bonn

  • Petit G, Luzum, B (2010) IERS Conventions. IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. pp 179, ISBN 3-89888-989-6

  • Plank L (2014) VLBI satellite tracking for the realization of frame ties. Dissertation, Technische Universität Wien, Geowissenschaftliche Mitteilungen, Heft Nr. 95, 2014, ISSN 1811-8380

  • Plank L, Hellerschmied A, McCallum J, Böhm J, Lovell J (2017) VLBI observations of GNSS-satellites: from scheduling to analysis. J Geod 91:867. https://doi.org/10.1007/s00190-016-0992-8

    Article  Google Scholar 

  • Sekido M, Fukushima T (2006) VLBI delay model for radio sources at finite distance. J Geod 80:137. https://doi.org/10.1007/s00190-006-0035-y

    Article  Google Scholar 

  • Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70:1393. https://doi.org/10.1103/RevModPhys.70.1393

    Article  Google Scholar 

  • Tang G, Cao J, Han S, Hu S, Ren T, Chen L, Sun J, Wang Mei, Li Y, Li L (2014) Research on Lunar radio measurements by Chang’E-3. In: International VLBI service for geodesy and astrometry 2014 General meeting proceedings: “VGOS: The New VLBI Network”, Eds. Dirk Behrend, Karen D. Baver, Kyla L. Armstrong, Science Press, Beijing, China, ISBN 978-7-03-042974-2, 2014, p. 473-477, 473

  • Thompson AR, Moran JM, Swenson GW (2017) In: Astronomy&, (ed) Interferometry and synthesis in radio astronomy, 3.th edn. Astrophysics Library. https://doi.org/10.1007/978-3-319-44431-4

Download references

Acknowledgements

The authors thank Armin Corbin for carefully reading the manuscript. This research is supported by the Deutsche Forschungsgemeinschaft, DFG, Project Number NO 318/14-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Jaron.

Appendix A: Derivation of the formulas

Appendix A: Derivation of the formulas

In this section we give a detailed derivation of the analytical formulas for the signal travel times. Since the final quantity of interest is the difference of the signal travel time, without loss of generality the time of reception of the signal at station one is defined to be zero, and the other times, i.e., the time of emission and time of reception at station two, are then to be understood relative to zero.

In the following all quantities denoted by x (positions) and v (velocities) are elements of \({\mathbb {R}}^3\), while quantities denoted by t (time) are elements of \({\mathbb {R}}\).

1.1 A.1: From sender to station 1

The light time equation for the signal propagation path from the sender to station one is

$$\begin{aligned} t_0 = -\frac{\left| x_0(t_0) - x_1(t_1)\right| }{c} - t_{\mathrm{g}\,01}, \end{aligned}$$
(32)

where \(x_1(t_1)\) is the position of receiver one at time \(t_1\), both of which are known quantities, \(t_{\mathrm{g}\,01}\) is the gravitational delay. This equation can be rewritten as

$$\begin{aligned} t_0 + t_{\mathrm{g}\,01} = -\frac{\left| x_0(t_0) - x_1(t_1)\right| }{c}, \end{aligned}$$
(33)

and we square both sides in order to be able to handle the norm of the right-hand side,

$$\begin{aligned} \left[ t_0 + t_{\mathrm{g}\,01}\right] ^2 = \frac{\left[ x_0(t_0) - x_1(t_1)\right] ^2}{c^2}, \end{aligned}$$
(34)

and we have to keep in mind that this squared equation has one solution which does not satisfy Eq. (32). We linearize the trajectory \(x_0(t)\) around \(t_1 = 0\),

$$\begin{aligned} x_0(t) = x_0(t_1) + v_0(t_1)[t - t_1] = x_0 + v_0t. \end{aligned}$$
(35)

Inserting (35) into (34) yields

$$\begin{aligned} \left[ t_0 + t_{\mathrm{g}\,01}\right] ^2 = \frac{\left[ x_0 + v_0t_0 - x_1\right] ^2}{c^2}, \end{aligned}$$
(36)

where we omit the argument for \(x_0\), \(x_1\), and \(v_0\), which are from now on to be understood to be evaluated at \(t_1 = 0\). With the definition \(x_{01} := x_0 - x_1\) Eq. (36) becomes

$$\begin{aligned} \left[ t_0 + t_{\mathrm{g}\,01}\right] ^2 = \frac{\left[ x_{01} + v_0t_0\right] ^2}{c^2}. \end{aligned}$$
(37)

Expanding both sides yields

$$\begin{aligned} t_0^2 + t_{\mathrm{g}\,01}^2 + 2t_0t_{\mathrm{g}\,01} = \frac{x_{01}^2 + v_0^2t_0^2 + 2x_{01}\cdot v_0t_0}{c^2}. \end{aligned}$$
(38)

Bringing everything on the left-hand side,

$$\begin{aligned} t_0^2 + t_{\mathrm{g}\,01}^2 + 2t_0t_{\mathrm{g}\,01} - \frac{x_{01}^2 + v_0^2t_0^2 + 2x_{01}\cdot v_0t_0}{c^2} = 0, \end{aligned}$$
(39)

and collecting all coefficients of the quadratic and linear terms,

$$\begin{aligned} \left[ 1- \frac{v_0^2}{c^2}\right] t_0^2 + \left[ 2t_{\mathrm{g}\,01} - \frac{2x_{01}\cdot v_0}{c^2}\right] t_0 + t_{\mathrm{g}\,01}^2 -\frac{x_{01}^2}{c^2} = 0.\nonumber \\ \end{aligned}$$
(40)

Introducing the definition \(\gamma _0 := [1 - v_0^2/c^2]^{-1/2}\), this becomes

$$\begin{aligned} \gamma _0^{-2}t_0^2 - 2\left[ \frac{x_{01}\cdot v_0}{c^2} - t_{\mathrm{g}\,01}\right] t_0 -\frac{x_{01}^2}{c^2} + t_{\mathrm{g}\,01}^2 = 0, \end{aligned}$$
(41)

or equivalently

$$\begin{aligned} t_0^2 - 2\gamma _0^{2}\left[ \frac{x_{01}\cdot v_0}{c^2} - t_{\mathrm{g}\,01}\right] t_0 - \gamma _0^{2}\left[ \frac{x_{01}^2}{c^2} - t_{\mathrm{g}\,01}^2\right] = 0, \end{aligned}$$
(42)

which has the solutions

$$\begin{aligned} t_0= & {} \gamma _0^{2}\left[ \frac{x_{01}\cdot v_0}{c^2} - t_{\mathrm{g}\,01}\right] \nonumber \\&\pm \sqrt{\gamma _0^{4}\left[ \frac{x_{01}\cdot v_0}{c^2} - t_{\mathrm{g}\,01}\right] ^2 + \gamma _0^{2}\left[ \frac{x_{01}^2}{c^2} - t_{\mathrm{g}\,01}^2\right] }. \end{aligned}$$
(43)

Remembering that \(t_0\) is the time of emission of the signal before reception at station one, we choose the minus sign here,

$$\begin{aligned} t_0= & {} \gamma _0^{2}\left[ \frac{x_{01}\cdot v_0}{c^2} - t_{\mathrm{g}\,01}\right] \end{aligned}$$
(44)
$$\begin{aligned}&- \sqrt{\gamma _0^{4}\left[ \frac{x_{01}\cdot v_0}{c^2} - t_{\mathrm{g}\,01}\right] ^2 + \gamma _0^{2}\left[ \frac{x_{01}^2}{c^2} - t_{\mathrm{g}\,01}^2\right] }. \end{aligned}$$
(45)

1.2 A.2: From sender to station 2

Being the signal emitted at the previously determined time \(t_0\) the light time equation for the signal propagation path from there to station two reads

$$\begin{aligned} t_2 = t_0 + \frac{\left| x_0(t_0) - x_2(t_2)\right| }{c} + t_{\mathrm{g}\,02}, \end{aligned}$$
(46)

where \(x_0(t_0) = x_0\) is known now and \(x_2\) has to be linearized,

$$\begin{aligned} x_2(t) = x_2(t_1) + v_2(t_1)[t - t_1] = x_2 + v_2t. \end{aligned}$$
(47)

Since we are only interested in the light travel time, we rewrite Eq. (46) as

$$\begin{aligned} {\varDelta }t_2 := t_2 - t_0 = \frac{\left| x_0(t_0) - x_2(t_2)\right| }{c} + t_{\mathrm{g}\,02}, \end{aligned}$$
(48)

where \({\varDelta }t_2\) is defined as the light travel time. Inserting (35) and (47) into Eq. (48),

$$\begin{aligned} {\varDelta }t_2= & {} \frac{\left| x_0(t_1) + v_0(t_1)t_0 - [x_2(t_1) + v_2(t_1)[{\varDelta }t_2 + t_0]]\right| }{c} \nonumber \\&+ t_{\mathrm{g}\,02}\end{aligned}$$
(49)
$$\begin{aligned}= & {} \frac{\left| {\tilde{x}}_{02} + v_0(t_1)t_0 - [v_2(t_1)[{\varDelta }t_2 + t_0]]\right| }{c} + t_{\mathrm{g}\,02} \end{aligned}$$
(50)
$$\begin{aligned}= & {} \frac{\left| {\tilde{x}}_{02} + v_{02}t_0 - v_2{\varDelta }t_2\right| }{c} + t_{\mathrm{g}\,02} \end{aligned}$$
(51)
$$\begin{aligned}= & {} \frac{\left| x_{02}(t_0) - v_2 {\varDelta }t_2\right| }{c} + t_{\mathrm{g}\,02}, \end{aligned}$$
(52)

with \({\tilde{x}}_{02} = x_0(t_1) - x_2(t_1)\), \(v_{02} = v_0(t_1) - v_2(t_1)\), and \(x_{02}(t_0) = {\tilde{x}}_{02} + v_{02}t_0 =: x_{02}\). Rewriting yields

$$\begin{aligned}&{\varDelta }t_2 - t_{\mathrm{g}\,02} = \frac{\left| x_{02} - v_2{\varDelta }t_2\right| }{c} \end{aligned}$$
(53)
$$\begin{aligned}&\quad \Rightarrow \left[ {\varDelta }t_2 - t_{\mathrm{g}\,02}\right] ^2 = \frac{\left[ x_{02} - v_2{\varDelta }t_2\right] ^2}{c^2} \end{aligned}$$
(54)
$$\begin{aligned}&\quad \Leftrightarrow {\varDelta }t_2^2 + t_{\mathrm{g}\,02}^2 - 2{\varDelta }t_2t_{\mathrm{g}\,02}\nonumber \\&= \frac{x_{02}^2 + v_2^2{\varDelta }t_2^2 - 2x_{02}\cdot v_{2}{\varDelta }t_2}{c^2} \end{aligned}$$
(55)
$$\begin{aligned}&\quad \Leftrightarrow {\varDelta }t_2^2 + t_{\mathrm{g}\,02}^2 - 2{\varDelta }t_2t_{\mathrm{g}\,02}\nonumber \\&\qquad - \frac{x_{02}^2 + v_2^2{\varDelta }t_2^2 - 2x_{02}\cdot v_{2}{\varDelta }t_2}{c^2} = 0 \end{aligned}$$
(56)
$$\begin{aligned}&\quad \Leftrightarrow \left[ 1 - \frac{v_2^2}{c^2}\right] {\varDelta }t_2^2 - 2\left[ t_{\mathrm{g}\,02} - \frac{x_{02}\cdot v_{2}}{c^2}\right] t_2 - \frac{x_{02}^2 }{c^2} \nonumber \\&\qquad + t_{\mathrm{g}\,02}^2 = 0 \end{aligned}$$
(57)
$$\begin{aligned}&\quad \Leftrightarrow \gamma _2^{-2}{\varDelta }t_2^2 - 2\left[ t_{\mathrm{g}\,02} - \frac{x_{02}\cdot v_{2}}{c^2}\right] {\varDelta }t_2 - \frac{x_{02}^2 }{c^2} + t_{\mathrm{g}\,02}^2 = 0 \nonumber \\ \end{aligned}$$
(58)
$$\begin{aligned}&\quad \Leftrightarrow {\varDelta }t_2^2 - \gamma _2^{2}2\left[ t_{\mathrm{g}\,02} - \frac{x_{02}\cdot v_{2}}{c^2}\right] {\varDelta }t_2 \nonumber \\&\qquad - \gamma _2^{2}\left[ \frac{x_{02}^2 }{c^2} - t_{\mathrm{g}\,02}^2\right] = 0 \end{aligned}$$
(59)
$$\begin{aligned}&\quad \Rightarrow {\varDelta }t_2 = \gamma _2^{2}\left[ t_{\mathrm{g}\,02} - \frac{x_{02}\cdot v_{2}}{c^2}\right] \nonumber \\&\qquad \pm \sqrt{\gamma _2^{4}\left[ t_{\mathrm{g}\,02} - \frac{x_{02}\cdot v_{2}}{c^2}\right] ^2 + \gamma _2^{2}\left[ \frac{x_{02}^2}{c^2} - t_{\mathrm{g}\,02}^2\right] }. \end{aligned}$$
(60)

And this time we have to choose the positive sign,

$$\begin{aligned} {\varDelta }t_2= & {} \gamma _2^{2}\left[ t_{\mathrm{g}\,02} - \frac{x_{02}\cdot v_{2}}{c^2}\right] \nonumber \\&+ \sqrt{\gamma _2^{4}\left[ t_{\mathrm{g}\,02} - \frac{x_{02}\cdot v_{2}}{c^2}\right] ^2 + \gamma _2^{2}\left[ \frac{x_{02}^2}{c^2} - t_{\mathrm{g}\,02}^2\right] }. \end{aligned}$$
(61)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaron, F., Nothnagel, A. Modeling the VLBI delay for Earth satellites. J Geod 93, 953–961 (2019). https://doi.org/10.1007/s00190-018-1217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1217-0

Keywords

Navigation