Skip to main content
Log in

Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region

Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper proposes a linear time series model to represent the climatology of the ionosphere and to investigate the characteristics of hourly averaged total electron content (TEC). The GPS–TEC observation data at the Bengaluru international global navigation satellite system (GNSS) service (IGS) station (geographic \(13.02^{\circ }\hbox {N}\), \(77.57^{\circ }\hbox {E}\); geomagnetic latitude \(4.4^{\circ }\hbox {N}\)) have been utilized for processing the TEC data during an extended period (2009–2016) in the \(24{\mathrm{th}}\) solar cycle. Solar flux F10.7p index, geomagnetic Ap index, and periodic oscillation factors have been considered to construct a linear TEC model. It is evident from the results that solar activity effect on TEC is high. It reaches the maximum value (\(\sim \) 40 TECU) during the high solar activity (HSA) year (2014) and minimum value (\(\sim \) 15 TECU) during the low solar activity (LSA) year (2009). The larger magnitudes of semiannual variations are observed during the HSA periods. The geomagnetic effect on TEC is relatively low, with the highest being \(\sim \) 4 TECU (March 2015). The magnitude of periodic variations can be seen more significantly during HSA periods (2013–2015) and less during LSA periods (2009–2011). The correlation coefficient of 0.89 between the observations and model-based estimations has been found. The RMSE between the observed TEC and model TEC values is 4.0 TECU (linear model) and 4.21 TECU (IRI2016 Model). Further, the linear TEC model has been validated at different latitudes over the northern low-latitude region. The solar component (F10.7p index) value decreases with an increase in latitude. The magnitudes of the periodic component become less significant with the increase in latitude. The influence of geomagnetic component becomes less significant at Lucknow GNSS station \((26.76^{\circ }\hbox {N}, 80.88^{\circ }\hbox {E})\) when compared to other GNSS stations. The hourly averaged TEC values have been considered and ionospheric features are well recovered with linear TEC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • A E, Zhang DH, Xiao Z, Hao YQ, Ridley AJ, Moldwin M (2011) Modeling ionospheric for F2 by using empirical orthogonal function analysis. Ann Geophys 29(8):1501–1515

    Article  Google Scholar 

  • Afraimovich E, Astafyeva E, Zhivetiev I (2006) Solar activity and global electron content. Dokl Earth Sci 409A(6):921–924

    Article  Google Scholar 

  • Anderson DN, Mendillo M, Herniter B (1987) A semi-empirical low-latitude ionospheric model. Radio Sci 22(02):292–306

    Article  Google Scholar 

  • Araujo-Pradere EA, Fuller-Rowell TJ, Spencer PSJ (2006) Consistent features of TEC changes during ionospheric storms. J Atmos Sol Terr Phys 68:1834–1842

  • Barman M, Barbara A, Devi M (1997) Measured and computed ionospheric electron content in the equatorial anomaly crest region. J Atmos Sol Terr Phys 59:2069–2075

    Article  Google Scholar 

  • Bergeot N, Tsagouri I, Bruyninx C, Legrand J, Chevalier J-M, Defraigne P, Baire Q, Pottiaux E (2013) The influence of space weather on ionospheric total electron content during the 23rd solar cycle. J Space Weather Space Clim 3:A25

    Article  Google Scholar 

  • Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2):261–275

  • Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15:418–429

    Article  Google Scholar 

  • Borries C, Berdermann J, Jakowski N, Wilken V (2015) Ionospheric storms—a challenge for empirical forecast of the total electron content. J Geophys Res Space Phys 120:3175–3186

    Article  Google Scholar 

  • Bremer J (2008) Long-term trends in the iono-spheric E and F1 regions. Ann Geophys 26:1189–1197

    Article  Google Scholar 

  • Daniell RE, Brown L, Anderson D, Fox M, Doherty PH, Decker D, Sojka JJ, Schunk RW (1995) Parameterized ionospheric model: a global ionospheric parameterization based on first principles models. Radio Sci 30:1499–1510

    Article  Google Scholar 

  • Emmert JT, Picone JM (2011) Statistical uncertainty of 1967–2005 thermospheric density trends derived from orbital drag. J Geophys Res 116:A00H09

    Google Scholar 

  • Forbes JM, Palo SE, Zhang X (2000) Variability of the ionosphere. J Atmos Sol Terr Phys 62:685–693

    Article  Google Scholar 

  • Gopi S (2010) Rinex GPS–TEC program, version 1.45. Boston College, Chestnut Hill

    Google Scholar 

  • Gulyaeva T (1999) Regional analytical model of ionospheric total electron content: monthly mean and standard deviation. Radio Sci 34:1507–1512

    Article  Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst AES 23(3):325–331

    Article  Google Scholar 

  • Laštovička J (2013) Trends in the upper atmosphere and ionosphere: recent progress. J Geophys Res Space Phys 118:3924–3935

    Article  Google Scholar 

  • Langley RM, Fedrizzi E, Paula M Santos, Komjathy A (2002) Mapping the low latitude ionosphere with GPS. GPS World 13(2):41–46

    Google Scholar 

  • Lean J, Emmert J, Picone J, Meier R (2011a) Global and regional trends in ionospheric total electron content. J Geophys Res Space Phys 116:A10318

    Google Scholar 

  • Lean J, Meier R, Picone J, Emmert J (2011) Ionospheric total electron content: global and hemispheric climatology. J Geophys Res Space Phys 116:A00H04

    Google Scholar 

  • Li S, Peng J, Xu W, Qin K (2013) Time series modeling and analysis of trends of hourly averagedionospheric total electron content. Adv Space Res 52:801–809

    Article  Google Scholar 

  • Liu L, Wan W, Ning B (2004) Statistical modeling of ionospheric foF2over Wuhan. Radio Sci 39:RS2013

    Article  Google Scholar 

  • Liu L, Wan W, Ning B, Pirog O, Kurkin V (2006) Solar activity variations of the ionospheric peak electron density. J Geophys Res Space Phys 111(A8):1

    Article  Google Scholar 

  • Liu L, Zhao B, Wan W, Ning B, Zhang B, Zhang ML, He M (2009) Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res Space Phys 114:A02032

    Article  Google Scholar 

  • Liu L, Wan W, Chen Y, Le H (2011) Solar activity effects of the ionosphere: a brief review. Chin Sci Bull 56:1202–1211

    Article  Google Scholar 

  • Mao T, Wan W, Yue X, Sun L, Zhao B, Guo J (2008) Anempirical orthogonal function model of total electron content over China. Radio Sci 43(2):RS2009

    Article  Google Scholar 

  • McNamara L, Wilkinson P (1983) Prediction of total electron content using the international reference ionosphere. J Atmos Sol Terr Phys 45:169–174

    Article  Google Scholar 

  • Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic, New York

    Google Scholar 

  • Mendillo M, Huang C-L, Pi X, Rishbeth H, Meier R (2005) The global ionospheric asymmetry in total electron content. J Atmos Sol Terr Phys 67:1377–1387

    Article  Google Scholar 

  • Mikhailov A, Perrone L (2011) On the mechanism of seasonal and solar cycle NmF2 variations: a quantitative estimate of the main parameters contribution using incoherent scatter radar observations. Geophys Res Space Phys 116:A03319

    Google Scholar 

  • Minow JI (2004) Development and implementation of an empirical ionosphere variability model. Adv Space Res 33:887–892

    Article  Google Scholar 

  • Moore P, Zhang Q, Alothman A (2005) Annual and semiannual variations of the Earth’s gravitational field from satellite laser ranging and CHAMP. J Geophys Res 110:B06401

    Google Scholar 

  • Oliver W, Kawamura S (2008) The causes of mid-latitude F layer behavior. J Geophys Res Space Phys 113:A08310

    Article  Google Scholar 

  • Qian L, Solomon SC, Kane TJ (2009) Seasonal variation of thermospheric density and composition. J Geophys Res Space Phys 114:A01312

    Article  Google Scholar 

  • Ren Z, Wan W, Liu L, Chen Y, Le H (2011) Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J Geophys Res Space Phys 116:A02308

    Google Scholar 

  • Richards P, Fennelly J, Torr D (1994) EUVAC: a solar EUV flux model for aeronomic calculations. J Geophys Res Space Phys 99:8981–8992

    Article  Google Scholar 

  • Rishbeth H, Müller-Wodarg I, Zou L, Fuller-Rowell T, Millward G, Moffett R, Idenden D, Aylward A (2000) Annual and semiannual variations in the ionospheric F2-layer. Ann Geophys 18:945–956

    Article  Google Scholar 

  • She C, Wan W, Xu G (2008) Climatological analysis and modeling of the ionospheric global electron content. Chin Sci Bull 53:282–288

    Article  Google Scholar 

  • Stankov S, Stegen K, Warnant R (2010) Seasonal variations of storm-time TEC at European middle latitudes. Adv Space Res 46:1318–1325

    Article  Google Scholar 

  • Strangeways HJ, Kutiev I, Cander LR, Kouris S, Gherm V, Marin D, De La Morena B, Pryse SE, Perrone L, Pietrella M (2009) Near-earth space plasma modelling and forecasting. Ann Geophys 52:255–271

    Google Scholar 

  • Wu Y, Liu R, Zhang B et al (2012) Variations of the ionospheric TEC using simultaneous measurements from the China crustal movement observation network. Ann Geophys 30:1423–1433

    Article  Google Scholar 

  • Xu J, Ma R, Wang W (2012) Terannual variation in the F2 layer peak electron density (NmF2) at middle latitudes. J Geophys Res Space Phys 17:A01308

    Google Scholar 

  • Yu Y, WAN WX, LIU LB, ZHAO BQ (2009) A global ionospheric TEC perturbation index. Chin J Geophys 52:907–912

    Article  Google Scholar 

  • Zeng Z, Burns A, Wang W, Lei J, Solomon S, Syndergaard S, Qian L, Kuo Y (2008) Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM. J Geophys Res 113:A07305

    Google Scholar 

  • Zou L, Rishbeth H, Müller-Wodarg ICF, Aylward AD, Millward GH, Fuller-Rowell TJ, Idenden DW, Moffett RJ (2000) Annual and seminannual variation in the ionospheric F2-layer. I. Modelling. Ann Geophys 18:927–944

    Article  Google Scholar 

  • Zhao B, Wan W, Liu L, Yue X, Venkatraman S (2005) Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis. Ann Geophys 23(12):3615–3631

    Article  Google Scholar 

  • Zhang M, Liu C, Wan W, Liu L, Ning B (2009) A global model ofthe ionospheric F2 peak height based on EOF analysis. Ann Geophys 27(8):3203–3212

    Article  Google Scholar 

Download references

Acknowledgements

The above work is a part of the project titled “Development of Ionospheric TEC Data Assimilation Model based on Kalman Filter using Ground and Space based GNSS and Ionosonde observations” sponsored by the Science and Engineering Research Board (SERB), New Delhi, India, Vide Sanction Letter No: ECR/2015/000410. The part of contribution is also supported by Department of Science and Technology (DST), New Delhi, India, SR/FST/ESI-130/2013(C) under DST-FIST Program. The authors thank the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Venkata Ratnam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suraj, P.S., Kumar Dabbakuti, J.R.K., Chowdhary, V.R. et al. Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region. J Geod 92, 863–872 (2018). https://doi.org/10.1007/s00190-017-1099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1099-6

Keywords

Navigation