Skip to main content
Log in

Using radial basis functions in airborne gravimetry for local geoid improvement

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Radial basis functions (RBFs) have been used extensively in satellite geodetic applications. However, to the author’s knowledge, their role in processing and modeling airborne gravity data has not yet been fully advocated or extensively investigated in detail. Compared with satellite missions, the airborne data are more suitable for these kinds of localized basis functions especially considering the following facts: (1) Unlike the satellite missions that can provide global or near global data coverage, airborne gravity data are usually geographically limited. (2) It is also band limited in the frequency domain. (3) It is straightforward to formulate the RBF observation equations from an airborne gravimetric system. In this study, a set of band-limited RBF is developed to model and downward continue the airborne gravity data for local geoid improvement. First, EIGEN6c4 coefficients are used to simulate a harmonic field to test the performances of RBF on various sampling, noise, and flight height levels, in order to gain certain guidelines for processing the real data. Here, the RBF method not only successfully recovers the harmonic field but also presents filtering properties due to its particular design in the frequency domain. Next, the software was tested for the GSVS14 (Geoid Slope Validation Survey 2014) area in Iowa as well as for the area around Puerto Rico and the US Virgin Islands by use of the real airborne gravity data from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project. By fully utilizing the three-dimensional correlation information among the flight tracks, the RBF can also be used as a data cleaning tool for airborne gravity data adjustment and cleaning. This property is further extended to surface gravity data cleaning, where conventional approaches have various limitations. All the related numerical results clearly show the importance and contribution of the use of the RBF for high- resolution local gravity field modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bates AP, Khalid A, Kennedy RA (2017) Efficient computation of Slepian functions for arbitrary regions on the sphere. IEEE Trans Signal Process 65(16):4379–4393. doi:10.1109/TSP.2017.2712122

    Article  Google Scholar 

  • Bentel K, Schmidt M, Denby CR (2013) Artifacts in regional gravity representations with spherical radial basis functions. J Geod Sci 3:173–187. doi:10.2478/jogs-2013-0029

    Google Scholar 

  • Bentel K, Schmidt M, Gerlach C (2013b) Different radial basis functions and their applicability for regional gravity field representation on sphere. GEM Int J Geomath 4:67–96. doi:10.1007/s13137-012-0046-1

    Article  Google Scholar 

  • Brozena JM, Peters MF (1988) An airborne gravity study of eastern North Carolina. Geop 53(2):245–253. doi:10.1190/1.1442459

    Article  Google Scholar 

  • Cheng MK, Shum CK, Tapley B (1997) Determination of longterm changes in the earth’s gravity field from satellite laser ranging observations. J Geophys Res 102(22):377–390. doi:10.1029/97JB01740

    Google Scholar 

  • Childers VA, Bell RE, Brozena JM (1999) Airborne gravimetry: an investigation of filtering. Geop 64:64–69. doi:10.1190/1.1444530

    Google Scholar 

  • Colombo O (1981) Global geopotential modeling from satellite-to-satellite tracking, Report No. 317, Ohio State University

  • Eicker A (2008) Gravity field refinement by radial basis functions from in-situ satellite data. Ph.D. Thesis, University of Bonn, Bonn, Germany

  • Eicker A, Schall J, Kusche J (2013) Regional gravity modelling from spaceborne data: case studies with GOCE. Geophys J Int 196:1431–1440. doi:10.1093/gji/ggt485

    Article  Google Scholar 

  • Forsberg R (1987) A new covariance model for inertial gravimetry and gradiometry. J Geophys Res 92(B2):1305–1310. doi:10.1029/JB092iB02p01305

    Article  Google Scholar 

  • Forsberg R, Olesen AV, Keller K, Møller M (2001) Airborne gravity and geoid surveys in the Arctic and Baltic seas. In: Proceedings of international symposium on kinematic systems in geodesy, geomatics and navigation, Banff, Canada, pp 586–593

  • Forsberg R, Olesen AV (2010) Airborne gravimetry. In: Gouchang X (ed) Sciences of geodesy-I, monograph. Spinger, Berlin, pp 83–104

    Chapter  Google Scholar 

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. doi:10.5880/icgem.2015.1

  • Gilardoni M, Reguzzoni M, Sampietro D (2016) GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud Geophys Geod 60(2):228–247. doi:10.1007/s11200-015-1114-4

    Article  Google Scholar 

  • Hansen P (1990) Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Stat Comput 11:503–518

    Article  Google Scholar 

  • Heiskanen WA, Mortiz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hubbert S, Le Gia QT, Morton TM (2015) Spherical radial basis functions, theory and applications, SpringerBriefs in mathematics. doi:10.1007/978-3-319-17939-1_2

  • Hwang C, Hsiao YS, Shih HC (2006) Data reduction in scalar airborne gravimetry: theory, software and case study in Taiwan. Comput Geosci 32:1573–1584. doi:10.1016/j.cageo.2006.02.015

    Article  Google Scholar 

  • Hwang C, Hsiao YS, Shih HC, Yang M, Chen KH, Forsberg R, Olesen AV (2007) Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment. J Geophys Res 112(B04407). doi:10.1029/2005JB004220

  • Jekeli C (2000) Inertial navigation systems with geodetic applications. Walter de Gruyter, Berlin

    Google Scholar 

  • Jekeli C (2005) Spline representation of functions on a sphere for geopotential modeling, Technical report 475, Department of Geodetic Science, the Ohio State University

  • Keller W, Hirsch M (1993) Downward continuation versus free-air reduction in airborne gravimetry. In: Montag H, Reigber C (eds) Geodesy and physics of the earth. International association of geodesy symposia, vol 112. Springer, Berlin. doi:10.1007/978-3-642-78149-0_62

    Google Scholar 

  • Klees R, Wittwer T (2007) Local gravity field modelling with multipole wavelets. In: Tregoning P, Rizos C (eds) Dynamic planet monitoring and understanding a dynamic planet with geodetic and oceanographic tools. In: International association of geodesy symposia 130: 303–308. doi:10.1007/978-3-540-49350-1_45

  • Klees R, Tenzer R, Prutkin I, Wittwer T (2008) A data-driven approach to local gravity field modeling using spherical radial basis functions. J Geod 82:457–471. doi:10.1007/s00190-007-0196-3

    Article  Google Scholar 

  • Kwon JH, Jekeli C (2001) A new approach for airborne vector gravimetry using GPS/INS. J Geod 74(10):690–700. doi:10.1007/s001900000130

    Article  Google Scholar 

  • Li X (2007) Moving base INS/GPS vector gravimetry on a land vehicle. Ph.D. dissertation, OSU report 486, the Ohio State University, Columbus OH

  • Li X (2009) Comparing the Kalman filter with a Monte Carlo-based artificial neural network in the INS/GPS vector gravimetric system. J Geod 83(9):797–804. doi:10.1007/s00190-008-0293-y

    Article  Google Scholar 

  • Li X (2011a) Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico. J Geod 85(9):597–605. doi:10.1007/s00190-011-0462-2

    Article  Google Scholar 

  • Li X (2011b) An exact formula for the tilt correction in scalar airborne gravimetry. Journal of Applied Geodesy. 5(2): 81–85, ISSN (Online) 1862–9024, ISSN (Print) 1862–9016. doi:10.1515/jag.2011.007

  • Li X (2017) Modeling the North American Vertical Datum of 1988 Errors in the Conterminous United States, under review

  • Li X, Crowley JW, Holmes SA, Wang YM (2016) The contribution of the GRAV-D airborne gravity to geoid determination in the Great Lakes region. Geophys Res Lett 43:4358–4365. doi:10.1002/2016GL068374

    Article  Google Scholar 

  • Lieb V, Schmidt M, Dettmering D, Börger K (2016) Combination of various observation techniques for regional modeling of the gravity field. J Geophys Res 121(5):3825–3845. doi:10.1002/2015JB012586

    Article  Google Scholar 

  • Lin M, Denker H, Müller J (2014) Regional gravity field modeling using free-positioned point masses. Stud Geophys Geod 58(2):207–226. doi:10.1007/s11200-013-1145-7

    Article  Google Scholar 

  • Muller PM, Sjogren WL (1968) Mascons: lunar mass concentrations. Science 161(3842):680–684. doi:10.1126/science.161.3842.680

    Article  Google Scholar 

  • Luyendyk APJ (1997) Processing of airborne magnetic data. Journal of Australian Geology & Geophysics 17(2):31–38. doi: fae9173a-71af-71e4-e044-00144fdd4fa6

  • Naeimi M (2013) Inversion of satellite gravity data using spherical radial base functions. Ph.D. thesis. Munchen, ISBN 978-3-7696-5123-2

  • Novák P, Heck B (2002) Downward continuation and geoid determination based on band-limited airborne gravity data. J Geod 76(5):269–278. doi:10.1007/s00190-002-0252-y

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, SansF Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117 (B04406). doi:10.1029/2011JB008916

  • Rummel R (2010) The interdisciplinary role of space geodesy—revisited. J Geodyn 49(3–4):112–115

    Article  Google Scholar 

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790

    Article  Google Scholar 

  • Rummel R (2012) Height unification using GOCE. J Geod Sci 2:355–362. doi:10.2478/v10156-011-0047-2

    Google Scholar 

  • Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. doi:10.1126/science.1258213

    Article  Google Scholar 

  • Save H, Bettadpur S, Tapley BD (2016) High resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547–7569. doi:10.1002/2016JB013007

    Article  Google Scholar 

  • Schmidt M, Fengler M, Mayer-Guerr T, Eicker A, Kusche J, Sanchez L, Han SC (2007) Regional gravity field modeling in terms of spherical base functions. J Geod 81(1):17–38. doi:10.1007/s00190-006-0101-5

    Article  Google Scholar 

  • Sebera J, Pitonak M, Hamackova E, Novák P (2015) Comparative study of the spherical downward continuation. Surv Geophys 2:253–267. doi:10.1007/s10712-014-9312-0

    Article  Google Scholar 

  • Simons FJ, Dahlen FA (2006) Spherical Slepian functions and the polar gap in geodesy. Geophys J Int 166(3):1039–1061. doi:10.1111/j.1365-245X.2006.03065.x

    Article  Google Scholar 

  • Slepian D, Pollak HO (1961) Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I, Bell System Technical Journal 40

  • Smith D (2007) The GRAV-D project: gravity for the Redefinition of the American Vertical Datum. http://www.ngs.noaa.gov/GRAV-D/pubs/GRAVD_v2007_12_19.pdf

  • Smith DA, Holmes SA, Li X, Guillaume Y, Wang YM, Brki B, Roman DR, Damiani TM (2013) Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011. J Geod 87(1012):885–907. doi:10.1007/s00190-013-0653-0

    Article  Google Scholar 

  • Sneeuw N, van Gelderen M (1997) The polar gap; in: Sans, F.; Rummel, R. (eds.) Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Lecture Notes in Earth Sciences, Vol. 65: 559-568, Springer, ISBN (Print) 978-3-540-62636-7, ISSN 0930-0317. doi:10.1007/BFb0011717

  • Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015) Time variable earths gravity field from SLR satellites. J Geod 89(10):945–960. doi:10.1007/s00190-015-0825-1

    Article  Google Scholar 

  • Studinger M, Bell R, Frearson N (2008) Comparison of AIRGrav and GT-1A airborne gravimeters for research applications. Geop 73(6):151–161. doi:10.1190/1.2969664

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tenzer R, Prutkin I, Klees R (2012) A comparison of different integral equation-based approaches for local gravity field modelling: case study for the Canadian Rocky Mountains. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth, International association of geodesy symposia, vol 136: 381388. doi:10.1007/978-3-642-20338-1_46

  • Tenzer R, Klees R (2008) The choice of the spherical radial basis functions in local gravity field modeling. Stud Geophys Geod 52:287–304. doi:10.1007/s11200-008-0022-2

    Article  Google Scholar 

  • Tscherning CC (2013) Geoid determination by 3D least-squares collocation. In: Sanso F, Sideris MG (eds) Geoid determination, lecture notes in earth system sciences 110. Springer, Berlin, pp 311–336. doi:10.1007/978-3-540-74700-0_7

    Google Scholar 

  • Wang YM, Saleh J, Li X, Roman DR (2012) The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation. J Geod 86(3):165–180. doi:10.1007/s00190-011-0506-7

    Article  Google Scholar 

  • Wang YM, Becker C, Mader G, Hanson T, Martin D, Holmes SA, Li X, Jiang T, Breidenbach S, Geoghegan C, Winester D (2015) Results of analysis of the geoid slope Validation Survey 2014 in Iowa, IUGG 2015

  • Wittwer T (2009) Regional gravity field modelling with radial basis functions. Ph.D. thesis, Technical University of Delft

  • Xu P (1998) Truncated SVD methods for discrete ill-posed problems. Geophys J Int 135:505–514. doi:10.1046/j.1365-246X.1998.00652.x

    Article  Google Scholar 

Download references

Acknowledgements

The author sincerely appreciates all of the useful comments and suggestions from the Editors and all the anonymous reviewers, especially reviewer 3 who gave very useful insights to further discuss the numerical results and very practical instructions to present them in a much better way. The author also thanks Mr. Heck, and Mr. Hilla at NGS for their help on improving the language usage and writing styles. Without all of these above mentioned help, the paper cannot be in the current shape that can be considered here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Li.

Appendices

A: Using RBF to clean surface gravity data in the band of d/o 2-2160

Fig. 15
figure 15

Simulated gravity anomalies at real NGS surface gravity points

Fig. 16
figure 16

Estimated survey biases versus the original artifacts that were added to the data

Goce and Egm2008 Combination (GECO Gilardoni et al. 2016), published by the International Centre for Global Earth Models (ICGEM, http://icgem.gfz-potsdam.de/ICGEM/) is used to generate gravity anomalies at real NGS surface gravity points in the state of Iowa, as shown in Fig. 15.

Fig. 17
figure 17

The estimated survey biases in the historical NGS terrestrial gravity survey

Fig. 18
figure 18

The geoid model errors due to the estimated survey biases in the historical NGS terrestrial gravity survey

According to the metadata that is available to the author, the data as shown in Fig. 15 are separated into 13 subsets. Random biases are assigned as survey biases of each of the 13 subsets. 0.5 mGal noise is added to all of the data as the observation error. Figure 16 shows the estimated survey biases and the original added artifacts. It shows that the estimation is fairly close to the true values.

After verifying the program by use of simulated data, the program is applied to the real NGS surface gravity, where the residual terrain effects (from 5 arcminutes to 3 arcseconds) have been removed. The estimated survey biases of the real NGS terrestrial gravity survey in the target area are shown in Fig. 17. If we simply neglect this problem in the case of using Stokes’s integral, the kernel has to be truncated around degree 800 to avoid 1 cm extreme errors in the geoid model, please see Fig. 18. This means that the global reference field has to be reliable at degree 800 that is kind of a challenging thing if only the satellite information is used during building the global coefficient models for the purpose of remove, compute, and restore in traditional geoid modeling method.

B: The actual number of the line biases in Fig. 10

Table 3 The estimated line biases in the NGS GRAV-D flights over Iowa (units in mGal)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X. Using radial basis functions in airborne gravimetry for local geoid improvement. J Geod 92, 471–485 (2018). https://doi.org/10.1007/s00190-017-1074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1074-2

Keywords

Navigation