Skip to main content

Advertisement

Log in

Transformation between surface spherical harmonic expansion of arbitrary high degree and order and double Fourier series on sphere

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the \(4 \pi \) fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as \(2^{30}\,{\approx }\,10^9\). The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpert B, Rokhlin V (1989) A fast algorithm for the evaluation of Legendre expansions. Yale U/Department of Computer Science Report 671

  • Cheong HB (2000) Double Fourier series on a sphere: applications to elliptic and vorticity equations. J Comput Phys 157:327–349

    Article  Google Scholar 

  • Cheong HB, Park JR, Kang HG (2012) Fourier-series representation and projection of spherical harmonic functions. J Geod 86:975–990

    Article  Google Scholar 

  • Clenshaw CW (1955) A note on the summation of Chebyshev series. Math Tables Other Aids Comput 9:110–118

    Google Scholar 

  • Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. OSU/Department Geodesy Science Survey Report 310

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  • Dilts GA (1985) Computation of spherical harmonic expansion coefficients via FFT’s. J Comput Phys 57:439–453

    Article  Google Scholar 

  • Driscoll JR, Healy D (1989) Computing Fourier transforms and convolutions on the 2-sphere. In: Proceedings of the 34th IEEE FOCS, pp 344–349

  • Driscoll JR, Healy D (1994) Computing Fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15:202–250

    Article  Google Scholar 

  • Driscoll JR, Healy D, Rockmore D (1997) Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J Comput 26:1066–1099

    Article  Google Scholar 

  • Egersdorfer R, Egersdorfer L (1936) Formeln und Tabellen der zugeordneten Kugelfunktionen 1. Art von \(n=1\) bis \(n=20\). Reichs fur Wett Wiss I:18–47

  • Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton Univ Press, Princeton

    Book  Google Scholar 

  • Elovitz M (1989) A test of a modified algorithm for computing spherical harmonic coefficients using an FFT. J Comput Phys 80:506–511

    Article  Google Scholar 

  • Foldvary L (2015) Sine series expansion of associated Legendre functions. Acta Geod Geophys 50:243–259

    Article  Google Scholar 

  • Fukushima T (2011) Efficient parallel computation of all-pairs N-body acceleration by do loop folding. Astron J 142:18–22

    Article  Google Scholar 

  • Fukushima T (2017) Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order. J Geod. doi:10.1007/s00190-017-1004-3

  • Ghobadi-Far K, Sharifi MA, Sneeuw N (2016) 2D Fourier series representation of gravitational functionals in spherical coordinates. J Geod 90:871–881

    Article  Google Scholar 

  • Gooding RH (1971) A recurrence relation for inclination functions and their derivatives. Celest Mech 4:91–98

    Article  Google Scholar 

  • Gooding RH, Wagner CA (2008) On the inclination function and a rapid stable procedure for their evaluation together with derivatives. Celest Mech Dyn Astron 101:247–272

    Article  Google Scholar 

  • Gooding RH, Wagner CA (2010) On a Fortran procedure for rotating spherical harmonic coefficients. Celest Mech Dyn Astron 108:95–106

    Article  Google Scholar 

  • Gruber C (2011) A study on the Fourier composition of the associated Legendre functions; suitable for applications in ultra-high resolution. Scientific technical report STR11/04, GFZ. Potsdam

  • Gruber C, Abrykosov O (2014) High resolution spherical and ellipsoidal harmonic expansions by fast Fourier transform. Stud Geophys Geod 58:595–608

    Article  Google Scholar 

  • Gruber C, Abrykosov O (2016) On computation and use of Fourier coefficients for associated Legendre functions. J Geod 90:525–535

    Article  Google Scholar 

  • Gruber C, Novak P, Sebera J (2011) FFT-based high-performance spherical harmonic transformation. Stud Geophys Geod 55:489–500

    Article  Google Scholar 

  • Healy D, Kostelec P, Rockmore D (2004) Towards safe and effective high-order Legendre transforms with applications to FFTs for the 2-sphere. Adv Comput Math 21:59–105

    Article  Google Scholar 

  • Healy D, Rockmore D, Kostelec P, Moore S (2003) FFTs for the 2-sphere: improvements and variations. J Fourier Anal Appl 9:341–385

    Article  Google Scholar 

  • Healy D, Rockmore D, Moore S (1996) An FFT for the 2-sphere and applications. J Fourier Anal Appl 9:341–385

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Hofsommer DJ, Potters ML (1960) Table of Fourier coefficients of associated Legendre functions. Proc KNAW Ser A Math Sci 63:460–466

    Google Scholar 

  • Ito T, Fukushima T (1997) Parallelized extrapolation method and its application to the orbital dynamics. Astron J 114:1260–1267

    Article  Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Springer, Berlin

    Book  Google Scholar 

  • Kostelec PJ, Rockmore DN (2008) FFTs on the rotation group. J Fourier Anal Appl 14:145–179

    Article  Google Scholar 

  • Maslen D (1998) Efficient computation of Fourier transform on compact groups. J Fourier Anal Appl 4:19–52

    Article  Google Scholar 

  • Moazezi S, Zomorrodian H, Siahkoohi HR, Azmoudeh-Ardalan A, Gholami A (2016) Fast ultrahigh-degree global spherical harmonic synthesis on nonequispaced grid points at irregular surfaces. J Geod 90:853–870

    Article  Google Scholar 

  • Mohlenkamp MJ (1999) A fast transform for spherical harmonics. J Fourier Anal Appl 5:159–184

    Article  Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichmann, Karlsruhe

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406

    Article  Google Scholar 

  • Rexer M, Hirt C (2015a) Ultra-high degree surface spherical harmonic analysis using the Gauss–Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Mars and Moon. Surv Geophys 36:803–830

    Article  Google Scholar 

  • Rexer M, Hirt C (2015b) Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000. J Geod 89:887–909

    Article  Google Scholar 

  • Ricardi LJ, Burrows ML (1972) A recurrence technique for expanding a function in spherical harmonics. IEEE Trans Comput 21:583–585

    Article  Google Scholar 

  • Risbo T (1996) Fourier transform summation of Legendre series and D-functions. J Geod 70:383–396

    Article  Google Scholar 

  • Rokhlin V, Tygert M (2006) Fast algorithms for spherical harmonic expansions. SIAM J Comput 27:1903–1928

    Article  Google Scholar 

  • Schuster A (1902) On some definite integrals and a new method of reducing a function of spherical coordinates to a series of spherical harmonics. Proc R Soc Lond 71:97–101

    Article  Google Scholar 

  • Schuster A (1903) On some definite integrals and a new method of reducing a function of spherical coordinates to a series of spherical harmonics. Philos Trans R Soc Lond A 200:181–223

    Article  Google Scholar 

  • Smith B, Sandwell D (2003) Accuracy and resolution of shuttle radar topography mission data. Geophys Res Lett 32:L21S01

    Google Scholar 

  • Sneeuw NJ, Bun R (1996) Global spherical harmonic computation by two-dimensional Fourier methods. J Geod 70:224–232

    Article  Google Scholar 

  • Stacey FD, Davis PM (2008) Physics of the Earth, 4th edn. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Swarztrauber PN (1979) On the spectral approximation of discrete scalar and vector functions on the sphere. SIAM J Numer Anal 16:934–949

    Article  Google Scholar 

  • Swarztrauber PN (1993) The vector harmonic transform method for solving partial differential equations in spherical geometry. Mon Weather Rev 121:3415–3427

    Article  Google Scholar 

  • Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2. In: Proceedings of the IEEE international geoscience and remote sensing symposium, pp 3657–3660

  • Tscherning CC, Poder K (1982) Some geodetic applications of Clenshaw summation. Boll Geod Sci Aff 41:349–375

    Google Scholar 

  • Wandelt BD, Gorski KM (2001) Fast convolution on the sphere. Phys Rev D 63:123002

    Article  Google Scholar 

  • Wigner EP (1931) Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Vieweg Verlag, Braunschweig

    Book  Google Scholar 

  • Zucker PA (1991) Smoothing and desmoothing in the Fourier approach to spherical coefficient determination. Proc IAG Symp 107:533–542

    Google Scholar 

Download references

Acknowledgements

The author appreciates valuable suggestions and fruitful comments by anonymous referees to improve the readability of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukushima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 320 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, T. Transformation between surface spherical harmonic expansion of arbitrary high degree and order and double Fourier series on sphere. J Geod 92, 123–130 (2018). https://doi.org/10.1007/s00190-017-1049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1049-3

Keywords

Navigation