Journal of Geodesy

, Volume 92, Issue 2, pp 109–121 | Cite as

An a priori solar radiation pressure model for the QZSS Michibiki satellite

  • Qile Zhao
  • Guo Chen
  • Jing Guo
  • Jingnan Liu
  • Xianglin Liu
Original Article


It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the \(\beta \) angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM’s D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki’s precise orbits over 21 months were determined. SLR validation indicated that the systematic \(\beta \)-angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.


QZSS Michibiki Solar radiation pressure Precise orbit determination MGEX Yaw-steering attitude Orbit-normal attitude 



The IGS MGEX, iGMAS, and ILRS are greatly acknowledged for providing the multi-GNSS and SLR tracking data. The research is partially supported by the National Natural Science Foundation of China (Grant Nos. 41404032, 41504009, 41574030, 41574027). Finally, the authors are also grateful for the comments and remarks of reviewers and editor-in-chief, who helped to improve the manuscript significantly.


  1. Akiyama K, Otsubo T (2012) Accuracy evaluation of QZS-1 orbit solutions with satellite laser ranging. International technical laser workshop 2012 (ITLW-12), 05–09 November 2012, Rome, ItalyGoogle Scholar
  2. Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. doi: 10.1007/s00190-015-0814-4 CrossRefGoogle Scholar
  3. Bar-Sever Y, Kuang D (2004) New empirically derived solar radiation pressure model for global positioning system satellites. The interplanetary network progress report, pp 42–159Google Scholar
  4. Bar-Sever Y, Kuang D (2005) New empirically derived solar radiation pressure model for global positioning system satellites during eclipse seasons. The interplanetary network progress report, pp 42–160Google Scholar
  5. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386Google Scholar
  6. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  7. Fliegel H, Gallini T, Swift E (1992) Global positioning system radiation force model for geodetic applications. J Geophys Res 97(B1):559–568. doi: 10.1029/91JB02564 CrossRefGoogle Scholar
  8. Fliegel H, Gallini T (1996) Solar force modeling of block IIR global positioning system satellites. J Spacecr Rockets 33(6):863–866. doi: 10.2514/3.26851 CrossRefGoogle Scholar
  9. Guo J, Zhao Q, Geng T, Su X, Liu J (2013) Precise orbit determination for COMPASS IGSO satellites during yaw maneuvers, vol III. In: Sun J, Jiao W, Wu H, Shi C (eds) Proceedings of China satellite navigation conference (CSNC) 2013, vol 245. Springer, pp 41–53. doi: 10.1007/978-3-642-37407-4_4
  10. Guo J, Chen G, Zhao Q, Wang C, Liu J, Liu X (2016) Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality. GPS Solut. doi: 10.1007/s10291-016-0540-2
  11. Garcia-Serrano C, Agrotis L, Dilssner F, Feltens J, van Kints M, Romero I, Springer T, Enderle W (2014) The ESA/ESCO analysis center progress and improvements. IGS Workshop 2014, 23–27 June 2014, Pasadena, USAGoogle Scholar
  12. Hauschild A, Steigenberger P, Rodriguez-Solano C (2012) Signal, orbit and attitude analysis of Japan’s first QZSS satellite Michibiki. GPS Solut 16:127–133. doi: 10.1007/s10291-011-0245-5 CrossRefGoogle Scholar
  13. Ikari S, Ebinuma T, Funase R, Nakasuka S (2013) An evaluation of solar radiation pressure models for QZS-1 precise orbit determination. In: Proceeding of the 26th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2013), 16–20 September, 2013, Nashville, TN, USAGoogle Scholar
  14. Ishijima Y, Inaba N, Matsumoto A, Terada K, Yonechi H, Ebisutani H, Ukawa S, Okamoto T (2008). Design and Development of the first Quasi-Zenith Satellite attitude and orbit control system. Aerospace conference, 2009 IEEE. doi: 10.1109/AERO.2009.4839537
  15. Inaba N, Matsumoto A, Hase H, Kogure S, Sawabe M, Terada K (2009) Design concept of Quasi Zenith Satellite System. Acta Astronaut 65(7–8):1068–1075. doi: 10.1016/j.actaastro.2009.03.068 CrossRefGoogle Scholar
  16. Marshall J, Luthcke S (1994) Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination. J Spacecr Rockets 31:99–105. doi: 10.2514/3.26408 CrossRefGoogle Scholar
  17. Meindl M, Beutler G, Thaller D, Jäggi A, Dach R (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi: 10.1016/j.asr.2012.10.026 CrossRefGoogle Scholar
  18. Milani A, Nobili AM, Farinella P (1987) Non-gravitational perturbations and satellite geodesy. Ciel Terre 103:128Google Scholar
  19. Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley R, Mervart L, Hugentobler U (2014) IGS-MGEX preparing the ground for multi-constellation GNSS science. Espace 9(1):42–49Google Scholar
  20. Montenbruck O, Steigenberger P, Hugentobler U (2015) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89(3):283–297. doi: 10.1007/s00190-014-0774-0
  21. Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  22. Prange L, Orliac E, Dach R, Arnold D, Beutler G, Schaer S, Jäggi A (2015) CODE’s multi-GNSS orbit and clock solution. In: EGU General Assembly 2015, 12–17 April 2015, Vienna, AustriaGoogle Scholar
  23. Prange L, Orliac E, Dach R, Arnold D, Beutler G, Schaer S, Jäggi A (2017) CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J Geod 91:345. doi: 10.1007/s00190-016-0968-8 CrossRefGoogle Scholar
  24. Rodríguez-Solano C, Hugentobler U, Steigenberger P (2012) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 49:1113–1128. doi: 10.1016/j.asr.2012.01.016 CrossRefGoogle Scholar
  25. Rodríguez-Solano C, Hugentobler U, Steigenberger P, Allende-Alba G (2013) Improving the orbits of GPS block IIA satellites during eclipse seasons. Adv Space Res 52(8):1511–1529. doi: 10.1016/j.asr.2013.07.013 CrossRefGoogle Scholar
  26. Rodríguez-Solano C, Hugentobler U, Steigenberger P, Blossfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products. J Geod 88:559–574. doi: 10.1007/s00190-014-0704-1 CrossRefGoogle Scholar
  27. Springer T, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2(3):50–62. doi: 10.1007/PL00012757 CrossRefGoogle Scholar
  28. Steigenberger P, Hauschild A, Montenbruck O, Rodriguez-Solano C, Hugentobler U (2013) Orbit and clock determination of QZS-1 based on the CONGO network. J Navig 60(1):31–40. doi: 10.1002/navi.27 CrossRefGoogle Scholar
  29. Steigenberger P, Kogure S (2014) IGS-MGEX: QZSS orbit and clock determination. IGS Workshop 2014, 23–27 June 2014, Pasadena, USAGoogle Scholar
  30. Takasu T (2013) Development of multi-GNSS orbit and clock determination software “MADOCA”. The 5th Asia Oceania Regional Workshop on GNSS, December 1–3, 2013Google Scholar
  31. Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87:475–486. doi: 10.1007/s00190-013-0622-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.Collaborative Innovation Center of Geospatial TechnologyWuhan UniversityWuhanChina
  3. 3.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  4. 4.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK
  5. 5.Fugro Intersite B.V.LeidschendamThe Netherlands

Personalised recommendations