Mathematical Methods of Operations Research

, Volume 74, Issue 3, pp 409–425 | Cite as

On parametric vector optimization via metric regularity of constraint systems

Article

Abstract

Some metric and graphical regularity properties of generalized constraint systems are investigated. Then, these properties are applied in order to penalize (in the sense of Clarke) various scalar and vector optimization problems. This method allows us to present several necessary optimality conditions in solid constrained vector optimization.

Keywords

Set-valued mappings Metric regularity Scalar and vector optimization 

Mathematics Subject Classification (2010)

90C30 49J53 54C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao TQ, Gupta P, Mordukhovich BS (2007) Necessary conditions for multiobjective optimization with equilibrium constraints. J Optim Theory Appl 135: 179–203MathSciNetMATHCrossRefGoogle Scholar
  2. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New YorkMATHGoogle Scholar
  3. Dontchev AL, Rockafellar RT (2009) Implicit functions and solution mappings. Springer, BerlinMATHCrossRefGoogle Scholar
  4. Durea M, Strugariu R (2010) Quantitative results on openness of set-valued mappings and implicit multifunction theorems. Pac J Optim 6: 533–549MathSciNetMATHGoogle Scholar
  5. Durea M, Strugariu R (2011a) On some Fermat rules for set-valued optimization problems. Optimization 60: 575–591MathSciNetMATHCrossRefGoogle Scholar
  6. Durea M, Strugariu R (2011b) Openness stability and implicit multifunction theorems. Applications to variational systems. Nonlinear Anal Theory Methods. doi:10.1016/j.na.2011.02.019
  7. Durea M, Tammer C (2009) Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58: 449–467MathSciNetMATHCrossRefGoogle Scholar
  8. Liu G, Ye J, Zhu J (2008) Partial exact penalty for mathematical programs with equilibrium constraints. Set-Valued Anal 16: 785–804MathSciNetMATHCrossRefGoogle Scholar
  9. Mordukhovich BS (2006) Variational analysis and generalized differentiation, vol I: basic theory, vol II: applications, Springer, Grundlehren der mathematischen Wissenschaften (A series of comprehensive studies in mathematics) vol 330 and 331, BerlinGoogle Scholar
  10. Mordukhovich BS (2009) Multiobjective optimization problems with equilibrium constraints. Math Program 117: 331–354MathSciNetMATHCrossRefGoogle Scholar
  11. Mordukhovich BS, Nam NM (2005) Subgradient of distance functions with applications to Lipschitzian stability. Math Program Ser B 104: 635–668MathSciNetMATHCrossRefGoogle Scholar
  12. Robinson SM (1980) Strongly regular generalized equations. Math Oper Res 5: 43–62MathSciNetMATHCrossRefGoogle Scholar
  13. Rockafellar RT (1985) Lipschitzian properties of multifunctions. Nonlinear Anal Theory Methods Appl 9: 867–885MathSciNetMATHCrossRefGoogle Scholar
  14. Thibault L (1991) On subdifferentials of optimal value functions. SIAM J Control Optim 29: 1019–1036MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Mathematics“Al. I. Cuza” UniversityIasiRomania
  2. 2.Department of Mathematics“Gh. Asachi” Technical UniversityIasiRomania

Personalised recommendations