Skip to main content
Log in

Detecting structural changes in large portfolios

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

Model-free tests for constant parameters often fail to detect structural changes in high dimensions. In practice, this corresponds to a portfolio with many assets and a reasonable long time series. We reduce the dimensionality of the problem by looking at a compressed panel of time series obtained by cluster analysis and the principal components of the data. With this procedure, we can extend tests for constant correlation matrix from a sub-portfolio to whole indices, which we exemplify using a major stock index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander C (1999) Optimal hedging using cointegration. R Soc 357:2039–2058

    Google Scholar 

  • Anderberg MR (2014) Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks. Academic Press, London

    Google Scholar 

  • Andreou E, Ghysels E (2009) Structural breaks in financial time series. Handbook of financial time series. Springer, Berlin, pp 839–870

    Chapter  Google Scholar 

  • Aue A, Horváth L (2013) Structural breaks in time series. J Time Ser Anal 34(1):1–16

    Article  Google Scholar 

  • Bonanno G, Caldarelli G, Lillo F, Miccichè S, Vandewalle N, Mantegna RN (2004) Networks of equities in financial markets. Eur Phys J B Condens Matter Complex Syst 38(2):363–371

    Article  Google Scholar 

  • Brida JG, Risso WA (2010) Hierarchical structure of the German stock market. Expert Syst Appl 37(5):3846–3852

    Article  Google Scholar 

  • Bronstein IN (2012) Taschenbuch Der Mathematik. Deutsch Harri GmbH; Auflage: 4., überarb. u. erw. A

  • Bücher A, Kojadinovic I, Rohmer T, Segers J (2014) Detecting changes in cross-sectional dependence in multivariate time series. J Multivar Anal 132:111–128

    Article  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95(25):14863–14868

    Article  Google Scholar 

  • Fodor IK (2002) A survey of dimension reduction techniques. No. UCRL-ID-148494. Lawrence Livermore National Lab, CA

  • Galeano P, Wied D (2017) Dating multiple change points in the correlation matrix. TEST 26(2):331–352

    Article  Google Scholar 

  • Greene WH (2008) Econometric analysis. Granite Hill Publishers, New York

    Google Scholar 

  • Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2006) Multivariate data analysis, vol 6. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178(3):218–224

    Article  Google Scholar 

  • Hallin M, Paindaveine D, Verdebout T (2014) Efficient R-estimation of principal and common principal components. J Am Stat Assoc 109(507):1071–1083

    Article  Google Scholar 

  • Hirschman AO (1964) The paternity of an index. Am Econ Rev 54(5):761–762

    Google Scholar 

  • Hirschman AO (1980) National power and the structure of foreign trade, vol 1. University of California Press, Berkeley

    Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Wiley Online Library, New York

    Google Scholar 

  • Kwan CCY (2010) The requirement of a positive definite covariance matrix of security returns for mean-variance portfolio analysis: a pedagogic illustration. Spreadsheets Educ (eJSiE) 4(1):4

    Google Scholar 

  • Laloux L, Cizeau P, Bouchaud J-P, Potters M (1999) Noise dressing of financial correlation matrices. Phys Rev Lett 83(7):1467

    Article  Google Scholar 

  • Laloux L, Cizeau P, Potters M, Bouchaud J-P (2000) Random matrix theory and financial correlations. Int J Theor Appl Finance 3(03):391–397

    Article  Google Scholar 

  • Longin F, Solnik B (1995) Is the correlation in international equity returns constant: 1960–1990? J Int Money Finance 14(1):3–26

    Article  Google Scholar 

  • Mantegna RN (1999) Hierarchical structure in financial markets. Eur Phys J B Condens Matter Complex Syst 11(1):193–197

    Article  Google Scholar 

  • Mantegna RN, Stanley HE (1999) Introduction to econophysics: correlations and complexity in finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31(3):274–295

    Article  Google Scholar 

  • Onnela J-P, Chakraborti A, Kaski K, Kertesz J, Kanto A (2003) Dynamics of market correlations: taxonomy and portfolio analysis. Phys Rev E 68(5):56110

    Article  Google Scholar 

  • Onnela J-P, Chakraborti A, Kaski K, Kertiész J (2002) Dynamic asset trees and portfolio analysis. Eur Phys J B Condens Matter Complex Syst 30(3):285–288

    Article  Google Scholar 

  • Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2(11):559–572

    Article  Google Scholar 

  • Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Guhr T, Stanley HE (2002) Random matrix approach to cross correlations in financial data. Phys Rev E 65(6):66126

    Article  Google Scholar 

  • Tola V, Lillo F, Gallegati M, Mantegna RN (2008) Cluster analysis for portfolio optimization. J Econ Dyn Control 32(1):235–258

    Article  Google Scholar 

  • Tumminello M, Lillo F, Mantegna RN (2010) Correlation, hierarchies, and networks in financial markets. J Econ Behav Organ 75(1):40–58

    Article  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Wied D (2017) A nonparametric test for a constant correlation matrix. Econ Rev 36(10):1157–1172

    Article  Google Scholar 

  • Wied D, Arnold M, Bissantz N, Ziggel D (2012) A new fluctuation test for constant variances with applications to finance. Metrika 75(8):1111–1127

    Article  Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1):37–52

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Collaborative Research Center Statistical Modeling of Nonlinear Dynamic Processes (SFB 823) of the German Research Foundation (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ullmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posch, P.N., Ullmann, D. & Wied, D. Detecting structural changes in large portfolios. Empir Econ 56, 1341–1357 (2019). https://doi.org/10.1007/s00181-017-1392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-017-1392-5

Keywords

JEL Classification

Navigation