Skip to main content
Log in

Presentation of smoothers: the family approach

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

The product of most statistical smoothing methods is a single curve estimate. A drawback of such methods is that what is learned varies with choice of the smoothing parameter. This paper proposes simultaneous display of all important features, through presentation of a family of smooths. Some suggestions are given as to how this should be done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cao, R., Cuevas, A. and González-Manteiga, W. (1994). A comparative study of several smoothing methods in density estimation, Computational Statstics and Data Analysis, 17, 153–176.

    Article  Google Scholar 

  2. Chaudhuri, P. and Marron, J. S. (1998) Scale space view of curve estimation, unpublished manuscript.

  3. Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structure in curves, to appear in Journal of the American Statistical Association.

  4. Chu, C. K. and Marron, J. S. (1991) Choosing a kernel regression estimator, Statistical Science, 6, 404–436.

    Article  MathSciNet  Google Scholar 

  5. Diggle, P. J. (1985) A kernel method for smoothing point process data, Applied Statististics, 34, 138–147.

    Article  Google Scholar 

  6. Eubank, R. L. (1988) Spline smoothing and Nonparametric Regression, Dekker — New York.

    MATH  Google Scholar 

  7. Fan, J. and Gijbels, I. (1996) Local polynomial modelling and its applications, Chapman and Hall — London.

    MATH  Google Scholar 

  8. Fan, J. and Marron, J. S. (1994) Fast implementations of nonparametric curve estimators, Journal of Computational and Graphical Statistics, 3, 35–56.

    Google Scholar 

  9. Green, P. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models, Chapman and Hall — London.

    Book  Google Scholar 

  10. Härdle, W. (1990) Applied Nonparametric Regression, Cambridge University Press — Cambridge.

    Book  Google Scholar 

  11. Izenman, I. and Sommer, C. J. (1988) Philatelic mixtures and multimodal densities, Journal of the American Statistical Association, 83, 941–953.

    Article  Google Scholar 

  12. Jones, M. C., Marron, J. S. and Sheather, S. J. (1996a) A brief survey of modern bandwidth selection methods, Journal of the American Statistical Association, 91, 401–407.

    Article  MathSciNet  Google Scholar 

  13. Jones, M. C., Marron, J. S. and Sheather, S. J. (1996b) Progress in data-based bandwidth selection for kernel density estimation, Computational Statistics, 11, 337–381.

    MathSciNet  MATH  Google Scholar 

  14. Kooperberg, C. and Stone, C. J. (1991) A study of log spline density estimation, Computational Statstics and Data Analysis, 12, 327–347.

    Article  Google Scholar 

  15. Marron, J. S. and Wand, M. P. (1992) Exact mean integrated squared error, Annals of Statistics, 20, 712–736.

    Article  MathSciNet  Google Scholar 

  16. Marron, J. S. and Udina, F. (1995) Interactive local bandwidth choice, Economics Working Paper 109, Universitat Pompeu Fabra.

  17. Minnotte, M. C. and Scott, D. W. (1993) The mode tree: a tool for visualization of nonparametric density features, Journal of Computational and Graphical Statistics, 2, 51–86.

    Google Scholar 

  18. Müller, H. G. (1988) Nonparametric Analysis of Longitudinal Data, Springer Lecture Notes in Statistics 46, Springer, New York.

    Book  Google Scholar 

  19. Park, B. U. and Marron, J. S. (1990) Comparison of data-driven bandwidth selectors, Journal of the American Statistical Association, 85, 66–72.

    Article  Google Scholar 

  20. Park, B. U. and Turlach, B. A. (1992) Practical performance of several data driven bandwidth selectors (with discussion), Computational Statistics, 7, 251–285.

    MATH  Google Scholar 

  21. Roeder, K. (1990) Density estimation with confidence sets exemplified by superclusters and voids in the galaxies, Journal of the American Statistical Association, 85, 617–624.

    Article  Google Scholar 

  22. Ruppert, D., Sheather, S. J. and Wand, M. P. (1995) An effective bandwidth selector for local least squares regression, Journal of the American Statistical Association, 90, 1257–1270.

    Article  MathSciNet  Google Scholar 

  23. Schmitz, H. P. and Marron, J. S. (1992) Simultaneous estimation of several size distributions of income, Econometric Theory, 8, 476–488.

    Article  Google Scholar 

  24. Scott, D. W. (1992) Multivariate density estimation: theory, practice and visualization, Wiley — New York.

    Book  Google Scholar 

  25. Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel density estimation, Journal of the Royal Statistical Society, Series B, 53, 683–690.

    MathSciNet  MATH  Google Scholar 

  26. Silverman, B. W. (1978) Choosing the window width when estimating a density, Biometrika, 65, 1–11.

    Article  MathSciNet  Google Scholar 

  27. Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

    Book  Google Scholar 

  28. Terrell, G. R. (1990). The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470–477.

    Article  MathSciNet  Google Scholar 

  29. Ullah, A. (1985) Specification analysis of econometric models, Journal of Quantitative Economics, 2, 187–209.

    Google Scholar 

  30. Wahba, G. (1990) Spline Models for Observational Data, SIAM — Philadelphia.

    Book  Google Scholar 

  31. Wand, M. P. and Jones, M. C. (1995) Kernel Smoothing, Chapman and Hall London.

    Book  Google Scholar 

  32. Wand, M. P., Marron, J. S. and Ruppert, D. R. (1991) Transformations in density estimation, Journal of the American Statistical Association, 86, 343–361.

    Article  MathSciNet  Google Scholar 

  33. Weisberg, S. (1980) Applied Linear Regression, Wiley, New York.

    MATH  Google Scholar 

Download references

3 Acknowledgments

This research was partially supported by NSF Grant DMS-9203135, and by the Division of Mathematics and Statistics, CSIRO.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marron, J.S., Chung, S.S. Presentation of smoothers: the family approach. Computational Statistics 16, 195–207 (2001). https://doi.org/10.1007/s001800100059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800100059

Keywords

Navigation