Skip to main content
Log in

Robust empirical likelihood for partially linear models via weighted composite quantile regression

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we investigate robust empirical likelihood inferences for partially linear models. Based on weighted composite quantile regression and QR decomposition technology, we propose a new estimation method for the parametric components. Under some regularity conditions, we prove that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the parametric components are constructed. The resulting estimators for parametric components are not affected by the nonparametric components, and then it is more robust, and is easy for application in practice. Some simulations analysis and a real data application are conducted for further illustrating the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradic J, Fan J (2011) Penalized composite quasi-likelihood for ultrahigh dimensional variable selection. J R Stat Soc Ser B 73:325–349

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2004) New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J Am Stat Assoc 99:710–723

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JT, Zhao PX (2017) QR decomposition based orthogonality estimation for partially linear models with longitudinal data. J Comput Appl Math 321:406–415

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang Y, Li H (2014) Penalized weighted composite quantile regression in the linear regression model with heavy-tailed autocorrelated errors. J Korean Stat Soc 43:531–543

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang X, Jiang J, Song X (2012) Oracle model selection for nonlinear models based on weighted composite quantile regression. Stat Sin 22:1479–1506

    MathSciNet  MATH  Google Scholar 

  • Jiang J, Jiang X, Song X (2014) Weighted composite quantile regression estimation of DTARCH models. Econom J 17:1–23

    Article  MathSciNet  Google Scholar 

  • Jiang R, Qian W, Zhou Z (2016) Weighted composite quantile regression for single-index models. J Multivar Anal 148:34–48

    Article  MathSciNet  MATH  Google Scholar 

  • Lee AJ, Scott AJ (1986) Ultrasound in ante-natal diagnosis. In: Brook RJ, Arnold GC, Hassard TH, Pringle RM (eds) The fascination of statistics. Marcel Dekker, New York, pp 277–293

    Google Scholar 

  • Liang H, Härdle W, Carroll RJ (1999) Estimation in a simiparametric partially linear errors-in-variables model. Ann Stat 27:1519–1535

    Article  MATH  Google Scholar 

  • Liang H, Wang S, Carroll RJ (2007) Partially linear models with missing response variables and error-prone covariates. Biometrika 94:185–198

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Schumaker LL (1981) Spline function. Wiley, New York

    MATH  Google Scholar 

  • Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York

    Book  MATH  Google Scholar 

  • Silverman BW (1986) Density estimation. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Wang HJ, Zhu Z (2011) Empirical likelihood for quantile regression models with longitudinal data. J Stat Plan Inference 141:1603–1615

    Article  MathSciNet  MATH  Google Scholar 

  • Xu G, Wang S, Huang JZ (2014) Focused information criterion and model averaging basedon weighted composite quantile regression. Scand J Stat 41:365–381

    Article  MathSciNet  MATH  Google Scholar 

  • Xue LG (2009) Empirical likelihood for linear models with missing responses. J Multivar Anal 100:1353–1366

    Article  MathSciNet  MATH  Google Scholar 

  • Xue LG, Zhu LX (2007) Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika 94:921–937

    Article  MathSciNet  MATH  Google Scholar 

  • Yan L, Chen X (2014) Empirical likelihood for partly linear models with errors in all variables. J Multivar Anal 130:275–288

    Article  MathSciNet  MATH  Google Scholar 

  • Yang H, Lv J, Guo C (2015) Weighted composite quantile regression estimation and variable selection for varying coefficient models with heteroscedasticity. J Korean Stat Soc 44:77–94

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao PX, Xue LG (2010) Empirical likelihood inferences for semiparametric varying coefficient partially linear models with longitudinal data. Commun Stat Theory Methods 39:1898–1914

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao PX, Tang XR (2016) Imputation based statistical inference for partially linear quantile regression models with missing responses. Metrika 79:991–1009

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao PX, Zhou XS, Lin L (2015) Empirical likelihood for composite quantile regression modeling. J Appl Math Comput 48:321–333

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36:1108–1126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the Chongqing Research Program of Basic Theory and Advanced Technology (cstc2016jcyjA0151), the Social Science Planning Project of Chongqing (2015PY24), the Fifth Batch of Excellent Talent Support Program for Chongqing Colleges and University (2017-35-16), and the Scientific Research Foundation of Chongqing Technology and Business University (2015-56-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixin Zhao.

Appendix: Proof of theorems

Appendix: Proof of theorems

To facilitate the proof, firstly, we list some lemmas.

Lemma 1

Suppose that the regularity conditions C1–C5 hold, and the number of knots \(\kappa \) satisfies \(\kappa =O(n^{1/(2r+1)})\). Then, we have that

$$\begin{aligned} \hat{b}_k-b_k=O_P(n^{-1/2}). \end{aligned}$$

Proof

Similar to the proof of Theorem 1 in Zou and Yuan (2008), this lemma can be easily derived. \(\square \)

Lemma 2

Suppose that the regularity conditions C1–C5 hold, and the number of knots \(\kappa \) satisfies \(\kappa =O(n^{1/(2r+1)})\). Then, we have that

$$\begin{aligned} \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} \hat{\eta }_{i}(\beta ){\mathop {\longrightarrow }\limits ^\mathcal{L}}N(0,\varLambda ), \end{aligned}$$
(14)

where \(\varLambda =G\omega ^{T}\varOmega \omega =\sum _{k=1}^K \sum _{l=1}^K\omega _{k}\omega _{l}(\min (\tau _{k},\tau _{l})-\tau _{k}\tau _{l})E(X^{*}X^{*T})\).

Proof

Let \(B_{ik}=I(\varepsilon _{i}^{*} \le b_k)-I(\varepsilon _{i}^{*} \le \hat{b}_k)\), then it is easy to show that

$$\begin{aligned} \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} \hat{\eta }_{i}(\beta )= & {} \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} \sum _{k=1}^{K}\omega _{k}X_{i}^{*}(\tau _k-I(\varepsilon _i \le b_k))\nonumber \\&+\frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} \sum _{k=1}^K B_{ik}\omega _{k}X_{i}^{*} \nonumber \\\equiv & {} \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} A_{i1}+\frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} A_{i2}. \end{aligned}$$
(15)

Note that

$$\begin{aligned} E\{A_{i1}\}=E\left\{ \sum _{k=1}^K \omega _{k}X_{i}^{*}(\tau _k-I(\varepsilon _{i}^{*} \le b_k))\right\} =0, \end{aligned}$$

then by some calculations, we can get

$$\begin{aligned} \begin{array}{lll} Var\{A_{i1}\}&{}=&{}\displaystyle Var\left\{ \sum _{k=1}^K\omega _{k}X_{i}^{*}(\tau _k-I(\varepsilon _{i}^{*} \le b_k))\right\} \\ &{}=&{}\displaystyle E\left\{ \left( \sum _{k=1}^K\omega _{k}X_{i}^{*}(\tau _k-I(\varepsilon _{i}^{*} \le b_k))\right) \left( \sum _{k=1}^K\omega _{k}X_{i}^{*}(\tau _k-I(\varepsilon _{i}^{*} \le b_k))\right) ^{T}\right\} \\ &{}=&{}\displaystyle E\left\{ \sum _{k=1}^K\sum _{l=1}^K \omega _{k}\omega _{l}(\tau _k-I(\varepsilon _{i}^{*} \le b_k))(\tau _{l}-I(\varepsilon _{i}^{*} \le b_{l}))X_{i}^{*}X_{i}^{*T}\right\} . \end{array} \end{aligned}$$

In addition, note that \(E\{I(\varepsilon _{i}^{*} \le b_k)\}=\tau _k\), \(E\{I(\varepsilon _{i}^{*} \le b_{l})\}=\tau _{l}\) and \(E\{I(\varepsilon _{i}^{*} \le b_k)I(\varepsilon _{i}^{*} \le b_{l})\}=\min \{\tau _k, \tau _{l}\}\), we have

$$\begin{aligned} \begin{array}{lll} \displaystyle E\{(\tau _k-I(\varepsilon _{i}^{*} \le b_k))(\tau _{l}-I(\varepsilon _{i}^{*} \le b_{l}))\}\\ ~~~\displaystyle =E\{\tau _k\tau _{l}-\tau _kI(\varepsilon _{i}^{*} \le b_{l})-I(\varepsilon _{i}^{*} \le b_k)\tau _{l}+I(\varepsilon _{i}^{*} \le b_k)I(\varepsilon _{i}^{*} \le b_{l})\}\\ ~~~\displaystyle =\min \{\tau _k, \tau _{l}\}-\tau _k\tau _{l}. \end{array} \end{aligned}$$

Hence, we get that

$$\begin{aligned} Var\{A_{i1}\}=\sum _{k=1}^{K}\sum _{l=1}^{K}\omega _{k}\omega _{l}(\min (\tau _{k},\tau _{l})-\tau _{k}\tau _{l})E(X^{*}X^{*T}). \end{aligned}$$

Then, using central limit theorem, we have

$$\begin{aligned} \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} A_{i1}{\mathop {\longrightarrow }\limits ^\mathcal{L}}N(0,\varLambda ). \end{aligned}$$
(16)

Next, we prove \(\frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} A_{i2}=o_{p}(1)\). Let \(\sum _{k=1}^{K}\omega _{k}B_{ik}=\delta _{i}\), \(A_{i2,j}\) be the jth component of \(A_{i2}\) and \(X_{ij}^{*}\) be the jth component of \(X_{i}^{*}\). Then by Lemma 2 in Zhao and Xue (2010), we have that

$$\begin{aligned} \max _{ s}\left| \sum _{i=1}^{s}X_{ij}^{*}\right| =O_{p}(\sqrt{n}\log n). \end{aligned}$$
(17)

In addition, by Lemma 1 we have that

$$\begin{aligned} B_{ik}=I(\varepsilon _i^{*} \le b_k)-I(\varepsilon _i^{*} \le \hat{b}_k)=O_{p}(n^{-1/2}). \end{aligned}$$
(18)

Then combing (17) and (18), and using the Abel inequality, it follows that

$$\begin{aligned} \begin{array}{lll} \displaystyle \left| \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L} A_{i2,j}\right| &{}=&{}\displaystyle \frac{1}{\sqrt{n-L}}\left| \sum _{i=1}^{n-L}\delta _{i}X_{ij}^{*}\right| \\ &{}\le &{} \displaystyle \frac{1}{\sqrt{n-L}}\max _{ i}|\delta _{i}|\max _{ s}\left| \sum _{i=1}^{s}X_{ij}^{*}\right| =o_{p}(1). \end{array} \end{aligned}$$

Thus, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^{n} A_{i2}=o_{p}(1). \end{aligned}$$
(19)

Then, the proof of this lemma is completed by invoking (15), (16) and (19). \(\square \)

Lemma 3

Suppose that the regularity conditions C1–C5 hold, and the number of knots \(\kappa \) satisfies \(\kappa =O(n^{1/(2r+1)})\). Then, we have that

$$\begin{aligned} \frac{1}{ n-L}\sum _{i=1}^{n-L} \hat{\eta }_i(\beta )\hat{\eta }_i^{T}(\beta ){\mathop {\longrightarrow }\limits ^\mathcal{P}}\varLambda , \end{aligned}$$

where “\({\mathop {\longrightarrow }\limits ^\mathcal{P}}\)” means the convergence in probability.

Proof

We also use the notations in the proof of Lemma 2. Then we have

$$\begin{aligned} \frac{1}{ n-L}\sum _{i=1}^{n-L} \hat{\eta }_i(\beta )\hat{\eta }_i^{T}(\beta )= & {} \frac{1}{ n-L}\sum _{i=1}^{n-L} A_{i1}A_{i1}^{T}+\frac{1}{ n-L}\sum _{i=1}^{n-L} A_{i1}A_{i2}^{T}\\&+\frac{1}{ n-L}\sum _{i=1}^{n-L} A_{i2}A_{i1}^{T}+ \frac{1}{ n-L}\sum _{i=1}^{n-L} A_{i2}A_{i2}^{T}\\\equiv & {} B_{1}+B_{2}+B_{3}+B_{4}. \end{aligned}$$

By the law of large numbers, we can derive that \(B_{1}{\mathop {\longrightarrow }\limits ^\mathcal{P}}\varLambda \). We now show \(B_{2}{\mathop {\longrightarrow }\limits ^\mathcal{P}}0\). Let \(B_{2,rs}\) be the (rs) component of \(B_{2}\), \(A_{ij,r}\) be the rth component of \(A_{ij}\), \(j=1,2\). Then we use the Cauchy–Schwarz inequality to get

$$\begin{aligned} |B_{2,rs}|\le \left( \frac{1}{ n-L}\sum _{i=1}^{n-L}A_{i1,r}^{2}\right) ^{1/2}\left( \frac{1}{ n-L}\sum _{i=1}^{n-L}A_{i2,s}^{2}\right) ^{1/2}. \end{aligned}$$

From the proof of Lemma 2, we can see \((n-L)^{-1}\sum _{i=1}^{n-L}A_{i1,r}^{2}=O_{p}(1)\) and \((n-L)^{-1}\sum _{i=1}^{n-L}A_{i2,s}^{2}=o_{p}(1)\). Hence \(B_{2}{\mathop {\longrightarrow }\limits ^\mathcal{P}}0\). Using the similar argument, we can prove that \(B_{v}{\mathop {\longrightarrow }\limits ^\mathcal{P}}0\), \(v=3,4\). This completes the proof of this lemma. \(\square \)

Proof of Theorem 1

By the definition of \(\hat{\eta }_{i}(\beta )\), and using the arguments similar to Owen (1990), we can obtain

$$\begin{aligned} \max _{ i}\Vert \hat{\eta }_{i}(\beta )\Vert =o_{p}((n-L)^{1/2}), \end{aligned}$$
(20)

and

$$\begin{aligned} \Vert \lambda \Vert =O_{p}((n-L)^{-1/2}). \end{aligned}$$
(21)

Combing (20) and (21), and using the same arguments as in the proof of Theorem 4 in Xue and Zhu (2007), we can get

$$\begin{aligned} R(\beta )=\left\{ \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L}\hat{\eta }_{i}(\beta )\right\} ^{T}\hat{\varLambda }^{-1} \left\{ \frac{1}{\sqrt{n-L}}\sum _{i=1}^{n-L}\hat{\eta }_{i}(\beta )\right\} +o_{p}(1), \end{aligned}$$

where \(\hat{\varLambda }=(n-L)^{-1}\sum _{i=1}^{n-L}\hat{\eta }_{i}(\beta )\hat{\eta }_{i}^{T}(\beta )\). This together with Lemmas 2 and 3 proves Theorem 1. \(\square \)

Proof of Theorem 2

Note that \(\hat{\beta }-\beta =O_{p}(n^{-1/2})\) and \(\hat{b}_{k}-b_{k}=O_{p}(n^{-1/2})\), \(k=1,\ldots ,K\), then by the Taylor expansion, we have that

$$\begin{aligned} K\left( \frac{Y_{i}^{*}-X_{i}^{*T}\hat{\beta }-\hat{b}_{k}}{h}\right)= & {} K\left( \frac{Y_{i}^{*}-X_{i}^{*T}\beta -b_{k}}{h}+ \frac{X_{i}^{*T}(\beta -\hat{\beta })+(b_{k}-\hat{b}_{k})}{h}\right) \nonumber \\= & {} K\left( \frac{Y_{i}^{*}-X_{i}^{*T}\beta -b_{k}}{h}\right) +O_{p}\left( \frac{(\beta -\hat{\beta })+(b_{k}-\hat{b}_{k})}{h}\right) \nonumber \\= & {} K\left( \frac{\varepsilon _{i}^{*}-b_{k}}{h}\right) +o_{p}(1). \end{aligned}$$
(22)

In addition, by some calculations, we have that

$$\begin{aligned} \frac{1}{h}E\left\{ K\left( \frac{\varepsilon _{i}^{*}-b_{k}}{h}\right) \right\}= & {} \frac{1}{h}\int K\left( \frac{t-b_{k}}{h}\right) f(t)dt\nonumber \\= & {} \int K(w)f(hw+b_{k})dw\nonumber \\= & {} f(b_{k})+O_{p}(h). \end{aligned}$$
(23)

Invoking (22) and (23), we obtain \(E(\hat{\varPi }_{k})=f(b_{k})\varGamma +o_{p}(1)\). Hence, by the law of large number, we derive that \(\hat{\varPi }_{k}{\mathop {\longrightarrow }\limits ^\mathcal{P}}f(b_{k})\varGamma \). Then, from the definition of \(\hat{\varPi }\), we have

$$\begin{aligned} \hat{\varPi }=\sum _{k=1}^{K}\omega _{k}\hat{\varPi }_{k}{\mathop {\longrightarrow }\limits ^\mathcal{P}}\sum _{k=1}^{K}\omega _{k} f(b_{k})\varGamma =\varPi . \end{aligned}$$

This completes the proof of Theorem 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Zhou, X. Robust empirical likelihood for partially linear models via weighted composite quantile regression. Comput Stat 33, 659–674 (2018). https://doi.org/10.1007/s00180-018-0793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0793-z

Keywords

Navigation