Influence of heat treatments on the formability of the 6061 Al alloy sheets: experiments and GTN damage model

Abstract

The research mainly focused on the forming limit curves (FLC) of the 6061 Al alloy subjected to heat treatments with various (1 mm, 1.6 mm, 2 mm, and 2.5 mm) sheet metal thicknesses. Five peculiar heat treatments, including natural aging temper (T4) and highest-strength (T6) temper, were devised to study the influence of heat treatments on the formability of 6061 Al alloy sheets. Tensile tests were executed to determine the plastic behavior of the alloy under specific heat treatments. Laser marked FLC specimens were deep-drawn with the proposed spring-attached Nakajima deep drawing test setup. A finite element model (FEM) of the deep drawing experiment was constructed to investigate the nucleation and growth mechanism of the voids. The developed model was compared and verified with the experimental FLC, fracture locations, and dome height. The FEM results were differed from the experimental FLC by less than 5% considering all heat treatments and sheet thicknesses. The results declared that sheet metal thickness has a positive effect on the effective strain up to failure. On the other hand, the duration of artificial aging time reduced effective strain to failure controlled by nucleation and growth of voids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Data availability

Not applicable

Code availability

Not applicable

References

  1. 1.

    Wang N, Zhou Z, Lu G (2011) Microstructural evolution of 6061 alloy during ısothermal heat treatment. J Mater Sci Technol 27:8–14. https://doi.org/10.1016/S1005-0302(11)60018-2

    Article  Google Scholar 

  2. 2.

    Benedyk JC (2010) 3 - Aluminum alloys for lightweight automotive structures. Woodhead Publishing Limited. https://doi.org/10.1533/9781845697822.1.79

  3. 3.

    Demir H, Gündüz S (2009) The effects of aging on machinability of 6061 aluminium alloy. Mater Des 30:1480–1483. https://doi.org/10.1016/j.matdes.2008.08.007

    Article  Google Scholar 

  4. 4.

    ASM Handbook Committe C (1991) ASM Metals Handbook Volume 4, 10 th Edit. ASM International

  5. 5.

    Braun R (2010) On the stress corrosion cracking behaviour of 6XXX series aluminium alloys. Int J Mater Res 101:657–668. https://doi.org/10.3139/146.110314

    Article  Google Scholar 

  6. 6.

    Buha J, Lumley RN, Crosky AG (2006) Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy. Metall Mater Trans A 37:3119–3130. https://doi.org/10.1007/s11661-006-0192-x

    Article  Google Scholar 

  7. 7.

    Buha J, Lumley RN, Crosky AG, Hono K (2007) Secondary precipitation in an Al-Mg-Si-Cu alloy. Acta Mater 55:3015–3024. https://doi.org/10.1016/j.actamat.2007.01.006

    Article  Google Scholar 

  8. 8.

    Marioara CD, Nordmark H, Andersen SJ, Holmestad R (2006) Post-β″ phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si alloys. J Mater Sci 41:471–478. https://doi.org/10.1007/s10853-005-2470-1

    Article  Google Scholar 

  9. 9.

    Yassar RS, Field DP, Weiland H (2005) Transmission electron microscopy and differential scanning calorimetry studies on the precipitation sequence in an Al-Mg-Si alloy: AA6022. J Mater Res 20:2705–2711. https://doi.org/10.1557/Jmr.2005.0330

    Article  Google Scholar 

  10. 10.

    Pogatscher S, Antrekowitsch H, Ebner T, Leoben M (2012) The role of co-clusters in the artificial aging of AA 6061 and AA 6060. 415–420. https://doi.org/10.1007/978-3-319-48179-1_70

  11. 11.

    Dutta I, Allen SM (1991) A calorimetric study of precipitation in aluminum alloy 6061. J Mater Sci Lett 10:323–326. https://doi.org/10.1007/BF00719697

    Article  Google Scholar 

  12. 12.

    Edwards GA, Stiller K, Dunlop GL, Couper MJ (1998) The precipitation sequence in Al–Mg–Si alloys. Acta Mater 46:3893–3904. https://doi.org/10.1016/S1359-6454(98)00059-7

    Article  Google Scholar 

  13. 13.

    Massardier V, Epicier T, Merle P (2000) Correlation between the microstructural evolution of A 6061 aluminium alloy and the evolution of its thermoelectric power. Acta Mater 48:2911–2924. https://doi.org/10.1016/S1359-6454(00)00085-9

    Article  Google Scholar 

  14. 14.

    Ozturk F, Sisman A, Toros S, Kilic S, Picu RC (2010) Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Mater Des 31:972–975. https://doi.org/10.1016/j.matdes.2009.08.017

    Article  Google Scholar 

  15. 15.

    Giuliano G, Bellini C, Sorrentino L, Turchetta S (2018) Forming process analysis of an AA6060 aluminum vessel. Frat ed Integrita Strutt 12:164–172. https://doi.org/10.3221/IGF-ESIS.45.14

    Article  Google Scholar 

  16. 16.

    Keeler SP, Backofen WA (1963) Plastic instability and fracture in sheet stretched over rigid punches. ASM Trans Q 56:25–48

    Google Scholar 

  17. 17.

    Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. Soc Automot Eng 380–387

  18. 18.

    El-Domiaty AA, Shabara MAN, Al-Ansary MD (1996) Determination of stretch-bendability of sheet metals. Int J Adv Manuf Technol 12:207–220. https://doi.org/10.1007/BF01351200

    Article  Google Scholar 

  19. 19.

    ISO (2006) ISO 12004-2:2008 Metallic materials-sheet and strip-determination of plastic strain ratio. BSI Stand Publ 3:10

    Google Scholar 

  20. 20.

    Mohammed B, Park T, Pourboghrat F, Hu J, Esmaeilpour R, Abu-Farha F (2018) Multiscale crystal plasticity modeling of multiphase advanced high strength steel. Int J Solids Struct 151:57–75. https://doi.org/10.1016/j.ijsolstr.2017.05.007

    Article  Google Scholar 

  21. 21.

    Mohammed B, Park T, Kim H, Pourboghrat F, Esmaeilpour R (2018) The forming limit curve for multiphase advanced high strength steels based on crystal plasticity finite element modeling. Mater Sci Eng A 725:250–266. https://doi.org/10.1016/j.msea.2018.04.029

    Article  Google Scholar 

  22. 22.

    Panich S, Barlat F, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Mater Des 51:756–766. https://doi.org/10.1016/j.matdes.2013.04.080

    Article  Google Scholar 

  23. 23.

    Bong HJ, Barlat F, Lee M-G, Ahn DC (2012) The forming limit diagram of ferritic stainless steel sheets: experiments and modeling. Int J Mech Sci 64:1–10. https://doi.org/10.1016/j.ijmecsci.2012.08.009

    Article  Google Scholar 

  24. 24.

    Saxena KK, Das IM, Mukhopadhyay J (2015) Evaluation of bending limit curves of aluminium alloy AA6014-T4 and dual phase steel DP600 at ambient temperature. Int J Mater Form 10:221–231. https://doi.org/10.1007/s12289-015-1271-6

    Article  Google Scholar 

  25. 25.

    Paul SK (2015) Path independent limiting criteria in sheet metal forming. J Manuf Process 20:291–303. https://doi.org/10.1016/j.jmapro.2015.06.025

    Article  Google Scholar 

  26. 26.

    Yang TS (2007) The strain path and forming limit analysis of the lubricated sheet metal forming process. Int J Mach Tools Manuf 47:1311–1321. https://doi.org/10.1016/j.ijmachtools.2006.08.019

    Article  Google Scholar 

  27. 27.

    Assempour A, Hashemi R, Abrinia K, Ganjiani M, Masoumi E (2009) A methodology for prediction of forming limit stress diagrams considering the strain path effect. Comput Mater Sci 45:195–204. https://doi.org/10.1016/j.commatsci.2008.09.025

    Article  Google Scholar 

  28. 28.

    Uppaluri R, Venkata Reddy N, Dixit PM (2011) An analytical approach for the prediction of forming limit curves subjected to combined strain paths. Int J Mech Sci 53:365–373. https://doi.org/10.1016/j.ijmecsci.2011.02.006

    Article  Google Scholar 

  29. 29.

    Nurcheshmeh M, Green DE (2011) Investigation on the strain-path dependency of stress-based forming limit curves. Int J Mater Form 4:25–37. https://doi.org/10.1007/s12289-010-0989-4

    Article  Google Scholar 

  30. 30.

    Ma B, Diao K, Wu X, Li X, Wan M, Cai Z (2016) The effect of the through-thickness normal stress on sheet formability. J Manuf Process 21:134–140. https://doi.org/10.1016/j.jmapro.2015.12.006

    Article  Google Scholar 

  31. 31.

    Tseng HC, Hung C, Huang CC (2010) An analysis of the formability of aluminum/copper clad metals with different thicknesses by the finite element method and experiment. Int J Adv Manuf Technol 49:1029–1036. https://doi.org/10.1007/s00170-009-2446-4

    Article  Google Scholar 

  32. 32.

    Dilmec M, Halkaci HS, Ozturk F (2013) Effects of sheet thickness and anisotropy on forming limit curves of AA2024-T4. Int J Adv Manuf Technol 67:2689–2700. https://doi.org/10.1007/s00170-012-4684-0

  33. 33.

    Dehghani F, Salimi M (2016) Analytical and experimental analysis of the formability of copper-stainless-steel 304L clad metal sheets in deep drawing. Int J Adv Manuf Technol 82:163–177. https://doi.org/10.1007/s00170-015-7359-9

    Article  Google Scholar 

  34. 34.

    Mahabunphachai S, Koç M (2010) Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures. Mater Des 31:2422–2434. https://doi.org/10.1016/j.matdes.2009.11.053

    Article  Google Scholar 

  35. 35.

    Wang L, Strangwood M, Balint D, Lin J, Dean TA (2011) Formability and failure mechanisms of AA2024 under hot forming conditions. Mater Sci Eng A 528:2648–2656. https://doi.org/10.1016/j.msea.2010.11.084

    Article  Google Scholar 

  36. 36.

    Wang L, Lee TC (2006) The effect of yield criteria on the forming limit curve prediction and the deep drawing process simulation. Int J Mach Tools Manuf 46:988–995. https://doi.org/10.1016/j.ijmachtools.2005.07.050

    Article  Google Scholar 

  37. 37.

    Nurcheshmeh M, Green DE (2012) Influence of out-of-plane compression stress on limit strains in sheet metals. Int J Mater Form 5:213–226. https://doi.org/10.1007/s12289-011-1044-9

    Article  Google Scholar 

  38. 38.

    Hashemi R, Abrinia K (2014) Analysis of the extended stress-based forming limit curve considering the effects of strain path and through-thickness normal stress. Mater Des 54:670–677. https://doi.org/10.1016/j.matdes.2013.08.023

    Article  Google Scholar 

  39. 39.

    Assempour A, Nejadkhaki HK, Hashemi R (2010) Forming limit diagrams with the existence of through-thickness normal stress. Comput Mater Sci 48:504–508. https://doi.org/10.1016/j.commatsci.2010.02.013

    Article  Google Scholar 

  40. 40.

    Dhara S, Basak S, Panda SK, Hazra S, Shollock B, Dashwood R (2016) Formability analysis of pre-strained AA5754-O sheet metal using Yld96 plasticity theory: role of amount and direction of uni-axial pre-strain. J Manuf Process 24:270–282. https://doi.org/10.1016/j.jmapro.2016.09.014

    Article  Google Scholar 

  41. 41.

    Zhang L, Lin J, Min J, Ye Y, Kang L (2016) Formability evaluation of sheet metals based on global strain distribution. J Mater Eng Perform 25:2296–2306. https://doi.org/10.1007/s11665-016-2054-z

    Article  Google Scholar 

  42. 42.

    Prasad KS, Panda SK, Kar SK, Murty SVSN, Sharma SC (2018) Prediction of fracture and deep drawing behavior of solution treated Inconel-718 sheets: numerical modeling and experimental validation. Mater Sci Eng A 733:393–407. https://doi.org/10.1016/j.msea.2018.07.007

    Article  Google Scholar 

  43. 43.

    Atkins AG (1996) Fracture in forming. J Mater Process Technol 56:609–618. https://doi.org/10.1016/0924-0136(95)01875-1

    Article  Google Scholar 

  44. 44.

    Isik K, Silva MB, Tekkaya AE, Martins PAF (2014) Formability limits by fracture in sheet metal forming. J Mater Process Technol 214:1557–1565. https://doi.org/10.1016/j.jmatprotec.2014.02.026

    Article  Google Scholar 

  45. 45.

    Lumelskyj D, Rojek J, Tkocz M (2018) Detection of strain localization in numerical simulation of sheet metal forming. Arch Civ Mech Eng 18:490–499. https://doi.org/10.1016/j.acme.2017.08.004

    Article  Google Scholar 

  46. 46.

    Amaral R, Teixeira P, Azinpour E, et al (2016) Evaluation of ductile failure models in sheet metal forming. MATEC Web Conf 80:1–6. https://doi.org/10.1051/matecconf/20168003004

  47. 47.

    Li J, Li S, Xie Z, Wang W (2015) Numerical simulation of incremental sheet forming based on GTN damage model. Int J Adv Manuf Technol 81:2053–2065. https://doi.org/10.1007/s00170-015-7333-6

    Article  Google Scholar 

  48. 48.

    Kami A, Dariani BM, Sadough Vanini A, Comsa DS, Banabic D (2014) Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. J Mater Process Technol 216:472–483. https://doi.org/10.1016/j.jmatprotec.2014.10.017

    Article  Google Scholar 

  49. 49.

    Nguyen HH, Nguyen TN, Vu HC (2018) Ductile fracture prediction and forming assessment of AA6061-T6 aluminum alloy sheets. Int J Fract 209:143–162. https://doi.org/10.1007/s10704-017-0249-4

    Article  Google Scholar 

  50. 50.

    Haltom SS, Kyriakides S, Ravi-Chandar K (2013) Ductile failure under combined shear and tension. Int J Solids Struct 50:1507–1522. https://doi.org/10.1016/j.ijsolstr.2012.12.009

    Article  Google Scholar 

  51. 51.

    Sari Sarraf I, Green DE, Vasilescu DM, Song Y (2018) Numerical analysis of damage evolution and formability of DP600 sheet with an extended Rousselier damage model. Int J Solids Struct 134:70–88. https://doi.org/10.1016/j.ijsolstr.2017.10.030

    Article  Google Scholar 

  52. 52.

    Jenab A, Green DE, Alpas AT, Golovashchenko SF (2018) Experimental and numerical analyses of formability improvement of AA5182-O sheet during electro-hydraulic forming. J Mater Process Technol 255:914–926. https://doi.org/10.1016/j.jmatprotec.2017.12.037

    Article  Google Scholar 

  53. 53.

    Banhart J, Chang CST, Liang Z, Wanderka N, Lay MDH, Hill AJ (2010) Natural aging in Al-Mg-Si alloys—a process of unexpected complexity. Adv Eng Mater 12:559–571. https://doi.org/10.1002/adem.201000041

    Article  Google Scholar 

  54. 54.

    Mohammadtaheri M (2012) A new metallographic technique for revealing grain boundaries in aluminum alloys. Metallogr Microstruct Anal 1:224–226. https://doi.org/10.1007/s13632-012-0033-9

    Article  Google Scholar 

  55. 55.

    ASTM (2009) Standard test methods for tension testing of metallic materials. ASTM International. https://doi.org/10.1520/E0008_E0008M-16AE01

  56. 56.

    Yildiz RA, Yilmaz S (2020) Stress–strain properties of artificially aged 6061 Al alloy: experiments and modeling. J Mater Eng Perform 29:5764–5775. https://doi.org/10.1007/s11665-020-05080-6

    Article  Google Scholar 

  57. 57.

    Barnwal VK, Raghavan R, Tewari A, Narasimhan K, Mishra SK (2017) Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet. Mater Sci Eng A 679:56–65. https://doi.org/10.1016/j.msea.2016.10.027

    Article  Google Scholar 

  58. 58.

    Barnwal VK, Tewari A, Narasimhan K, Mishra SK (2016) Effect of plastic anisotropy on forming behavior of AA-6061 aluminum alloy sheet. J Strain Anal Eng Des 51:507–517. https://doi.org/10.1177/0309324716655727

    Article  Google Scholar 

  59. 59.

    ASTM (2010) Standard test method for plastic strain ratio ‘r’ for sheet metal 1. ASTM International. https://doi.org/10.1520/E0517-00R10.2

  60. 60.

    ASTM (2014) Standard test method for determining forming limit curves. ASTM International. https://doi.org/10.1520/E2218-15

  61. 61.

    Yildiz RA, Yilmaz S (2017) The verification of strains obtained by grid measurements using digital image processing for sheet metal formability. J Strain Anal Eng Des 52:506–514. https://doi.org/10.1177/0309324717734669

    Article  Google Scholar 

  62. 62.

    Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15. https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  63. 63.

    Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407. https://doi.org/10.1007/BF00036191

    Article  Google Scholar 

  64. 64.

    Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169. https://doi.org/10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  65. 65.

    Zhao PJ, Chen ZH, Dong CF (2016) Failure analysis based on microvoids damage model for DP600 steel on in-situ tensile tests. Eng Fract Mech 154:152–168. https://doi.org/10.1016/j.engfracmech.2015.11.017

    Article  Google Scholar 

  66. 66.

    Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102:249–256. https://doi.org/10.1115/1.3224807

    Article  Google Scholar 

  67. 67.

    Yildiz RA (2019) Investigation of the effect of heat treatments on the formability of the 6061 Al alloy. Istanbul Technical University

  68. 68.

    Yildiz RA, Yilmaz S (2020) European Journal of Mechanics/A Solids Experimental Investigation of GTN model parameters of 6061 Al alloy. Eur J Mech/A Solids 83:104040. https://doi.org/10.1016/j.euromechsol.2020.104040

    Article  MATH  Google Scholar 

  69. 69.

    He M, Li F, Wang Z (2011) Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test. Chin J Aeronaut 24:378–386. https://doi.org/10.1016/S1000-9361(11)60045-9

    Article  Google Scholar 

  70. 70.

    Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech - A/Solids 27:1–17. https://doi.org/10.1016/j.euromechsol.2007.08.002

    Article  MATH  Google Scholar 

  71. 71.

    Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75:3343–3366. https://doi.org/10.1016/j.engfracmech.2007.07.022

    Article  Google Scholar 

  72. 72.

    Jackiewicz J (2011) Use of a modified Gurson model approach for the simulation of ductile fracture by growth and coalescence of microvoids under low, medium and high stress triaxiality loadings. Eng Fract Mech 78:487–502. https://doi.org/10.1016/j.engfracmech.2010.03.027

    Article  Google Scholar 

  73. 73.

    Sen H, Yilmaz S, Yildiz RA (2020) Springback behavior of DP600 steel: an implicit finite element simulation. J Eng Res 8:252–264

    Google Scholar 

  74. 74.

    Wang C, Ma R, Zhao J, Zhao J (2017) Calculation method and experimental study of coulomb friction coefficient in sheet metal forming. J Manuf Process 27:126–137. https://doi.org/10.1016/j.jmapro.2017.02.016

    Article  Google Scholar 

  75. 75.

    Oliveira MC, Alves JL, Menezes LF (2008) Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch Comput Methods Eng 15:113–162. https://doi.org/10.1007/s11831-008-9018-x

    MathSciNet  Article  MATH  Google Scholar 

  76. 76.

    Duncan JL, Shabel BS, Filho JG (2010) A tensile strip test for evaluating friction in sheet metal forming. SAE Tech Pap Ser 1. https://doi.org/10.4271/780391

  77. 77.

    Luo M, Wierzbicki T (2010) Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model. Int J Solids Struct 47:3084–3102. https://doi.org/10.1016/j.ijsolstr.2010.07.010

    Article  MATH  Google Scholar 

  78. 78.

    Ramazani A, Abbasi M, Prahl U, Bleck W (2012) Failure analysis of DP600 steel during the cross-die test. Comput Mater Sci 64:101–105. https://doi.org/10.1016/j.commatsci.2012.01.031

    Article  Google Scholar 

  79. 79.

    Keeler S, Brazier WG (1975) Relationship between laboratory material characterization and press-shop formability. In: Proceedings of the Micro alloying Conference. pp 21–32

Download references

Materials availability

Not applicable

Funding

This study was funded by Istanbul Technical University (Project Number: 38489).

Author information

Affiliations

Authors

Contributions

The corresponding author is responsible for ensuring that the descriptions are accurate and agreed upon by all authors. The roles of all authors listed below:

Rasid Ahmed YILDIZ: Methodology, Software, Validation, Investigation, Resources, Writing – Original Draft,

Safak YILMAZ: Conceptualization, Writing – Review & Editing, Supervision, Project Administration, Funding Acquisition

Corresponding author

Correspondence to Rasid Ahmed Yildiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yildiz, R.A., Yilmaz, S. Influence of heat treatments on the formability of the 6061 Al alloy sheets: experiments and GTN damage model. Int J Adv Manuf Technol (2021). https://doi.org/10.1007/s00170-021-06792-2

Download citation

Keywords

  • 6061 aluminum alloy
  • GTN damage model
  • Finite element analysis
  • Forming limit curve
  • Sheet metal forming