Real-time thermal modelling approach of a machine tool spindle based on bond graph method

Abstract

The thermal characteristics of spindles have a significant influence on the workpiece quality. This paper proposes a novel real-time thermal characteristic modelling approach for spindles based on the bond graph method, with simplified thermal structure and brief estimation and calibration of thermal parameters. First, the thermal characteristics of this spindle are analysed and simply divided into different thermal components. Then, a network of thermal capacitances and thermal resistances is established based on the mechanism analysis of heat generation and heat transfer, and consequently, a thermal characteristics model is developed based on the bond graph method. Parameters of thermal conditions of the spindle are briefly estimated using theoretical analysis and empirical formulas. An experiment is designed to calibrate these thermal parameters of the model, followed by verification experiments of accuracy and robustness, the results of which indicate stable good prediction performance, with the maximum error of 0.7355 °C and the average error of 0.1989 °C. Finally, this model is applied in the quantitative investigation of the influence of working conditions on the thermal characteristics of the spindle and the real-time prediction of spindle’s thermal deformation with 5.26 μm maximum error and 1.45 μm average error. The results indicate that this approach has considerable advantages in the real-time prediction of thermal behaviours of spindles and can be used in industrial applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. 1.

    Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38. https://doi.org/10.1016/j.ijmachtools.2015.04.008

    Article  Google Scholar 

  2. 2.

    Cao HR, Zhang XW, Chen XF (2017) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52. https://doi.org/10.1016/j.ijmachtools.2016.10.005

    Article  Google Scholar 

  3. 3.

    Yan K, Hong J, Zhang JH, Mi W, Wu WW (2016) Thermal-deformation coupling in thermal network for transient analysis of spindle-bearing system. Int J Therm Sci 104:1–12. https://doi.org/10.1016/j.ijthermalsci.2015.12.007

    Article  Google Scholar 

  4. 4.

    Liu ZF, Pan MH, Zhang AP, Zhao YS, Yang Y, Ma CY (2015) Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance. Int J Adv Manuf Technol 76(9-12):1913–1926. https://doi.org/10.1007/s00170-014-6350-1

    Article  Google Scholar 

  5. 5.

    Zheng DX, Chen WF (2017) Thermal performances on angular contact ball bearing of high-speed spindle considering structural constraints under oil-air lubrication. Tribol Int 109:593–601. https://doi.org/10.1016/j.triboint.2017.01.035

    Article  Google Scholar 

  6. 6.

    Zheng DX, Chen WF, Li MM (2018) An optimized thermal network model to estimate thermal performances on a pair of angular contact ball bearings under oil-air lubrication. Appl Therm Eng 131:328–339. https://doi.org/10.1016/j.applthermaleng.2017.12.019

    Article  Google Scholar 

  7. 7.

    Ma C, Yang J, Zhao L, Mei XS, Shi H (2015) Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Appl Therm Eng 86:251–268. https://doi.org/10.1016/j.applthermaleng.2015.04.064

    Article  Google Scholar 

  8. 8.

    Zhang LX, Li JP, Wu YH, Zhang K, Wang YW (2018) Prediction model and experimental validation for the thermal deformation of motorized spindle. Heat Mass Transf 54(9):2691–2704. https://doi.org/10.1007/s00231-018-2317-3

    Article  Google Scholar 

  9. 9.

    Tan F, Wang L, Yin M, Yin GF (2019) Obtaining more accurate convective heat transfer coefficients in thermal analysis of spindle using surrogate assisted differential evolution method. Appl Therm Eng 149:1335–1344. https://doi.org/10.1016/j.applthermaleng.2018.12.124

    Article  Google Scholar 

  10. 10.

    Zivkovic AM, Zeljkovic MV, Mladjenovic CD, Tabakovic SN, Milojevic ZL, Hadzistevic MJ (2019) A study of thermal behavior of the machine tool spindle. Therm Sci 23(3):2117–2130. https://doi.org/10.2298/tsci180129118z

    Article  Google Scholar 

  11. 11.

    Zhang LL, Xuan JP, Shi TL, Li R, He S, Tang L (2020) Robust, fractal theory, and FEM-based temperature field analysis for machine tool spindle. Int J Adv Manuf Technol 111(5-6):1571–1586. https://doi.org/10.1007/s00170-020-05926-2

    Article  Google Scholar 

  12. 12.

    Zhang LL, Xuan JP, Shi TL (2020) Obtaining more accurate thermal boundary conditions of machine tool spindle using response surface model hybrid artificial bee colony algorithm. Symmetry-Basel 12(3). https://doi.org/10.3390/sym12030361

  13. 13.

    Li KY, Luo WJ, Wei SJ (2020) Machining accuracy enhancement of a machine tool by a cooling channel design for a built-in spindle. Appl Sci Basel 10(11). https://doi.org/10.3390/app10113991

  14. 14.

    Gawthrop PJ, Bevan GP (2007) Bond-graph modeling. IEEE Control Syst Mag 27(2):24–45. https://doi.org/10.1109/mcs.2007.338279

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Wu J, Yu G, Gao Y, Wang LP (2018) Mechatronics modeling and vibration analysis of a 2-DOF parallel manipulator in a 5-DOF hybrid machine tool. Mech Mach Theory 121:430–445. https://doi.org/10.1016/j.mechmachtheory.2017.10.023

    Article  Google Scholar 

  16. 16.

    Djeziri MA, Benmoussa S, Sanchez R (2018) Hybrid method for remaining useful life prediction in wind turbine systems. Renew Energy 116:173–187. https://doi.org/10.1016/j.renene.2017.05.020

    Article  Google Scholar 

  17. 17.

    Feidt M, Costea M, Petrescu S, Stanciu C (2016) Nonlinear thermodynamic analysis and optimization of a carnot engine cycle. Entropy 18(7):18. https://doi.org/10.3390/e18070243

    MathSciNet  Article  Google Scholar 

  18. 18.

    Fu J, Mare JC, Fu YL (2017) Modelling and simulation of flight control electromechanical actuators with special focus on model architecting, multidisciplinary effects and power flows. Chin J Aeronaut 30(1):47–65. https://doi.org/10.1016/j.cja.2016.07.006

    Article  Google Scholar 

  19. 19.

    Aridhi E, Albouchi A, Mami A (2017) Observability and controllability study of a household refrigerator exposed to an outdoor cold airflow using bond graph approach. Int J Air Cond Refrig 25(1):6. https://doi.org/10.1142/s2010132517500018

    Article  Google Scholar 

  20. 20.

    Nielsen JB, Pedersen E (2018) On the modelling of heat exchangers and heat exchanger network dynamics using bond graphs. Math Comput Model Dyn Syst 24(6):606–622. https://doi.org/10.1080/13873954.2018.1533566

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kim SM, Lee SK (2001) Prediction of thermo-elastic behavior in a spindle-bearing system considering bearing surroundings. Int J Mach Tools Manuf 41(6):809–831. https://doi.org/10.1016/s0890-6955(00)00103-6

    Article  Google Scholar 

  22. 22.

    Tan F, Yin M, Wang L, Yin GF (2018) Spindle thermal error robust modeling using LASSO and LS-SVM. Int J Adv Manuf Technol 94(5-8):2861–2874. https://doi.org/10.1007/s00170-017-1096-1

    Article  Google Scholar 

  23. 23.

    Yao XP, Hu T, Yin GF, Cheng CH (2020) Thermal error modeling and prediction analysis based on OM algorithm for machine tool's spindle. Int J Adv Manuf Technol 106(7-8):3345–3356. https://doi.org/10.1007/s00170-019-04767-y

    Article  Google Scholar 

  24. 24.

    Liu K, Li T, Liu HB, Liu Y, Wang YQ (2020) Analysis and prediction for spindle thermal bending deformations of a vertical milling machine. IEEE Trans Ind Inf 16(3):1549–1558. https://doi.org/10.1109/tii.2019.2926991

    Article  Google Scholar 

  25. 25.

    Liu K, Li T, Li TJ, Liu Y, Wang YQ, Jia ZY (2018) Thermal behavior analysis of horizontal CNC lathe spindle and compensation for radial thermal drift error. Int J Adv Manuf Technol 95(1-4):1293–1301. https://doi.org/10.1007/s00170-017-1273-2

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant number 2018YFB1701204) and the National Natural Science Foundation of China (Grant numbers 51975372).

Author information

Affiliations

Authors

Contributions

Zhengchun Du was in charge of the whole trial; Yun Yang wrote the manuscript; Xiaobing Feng assisted with sampling and laboratory analyses; Jianguo Yang supported the equipment and experimental guidance.

Corresponding author

Correspondence to Zhengchun Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

All custom code during this study are included in the supplementary information files

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1

(ZIP 9.82 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Du, Z., Feng, X. et al. Real-time thermal modelling approach of a machine tool spindle based on bond graph method. Int J Adv Manuf Technol 113, 99–115 (2021). https://doi.org/10.1007/s00170-021-06611-8

Download citation

Keywords

  • Real-time thermal model
  • Bond graph method
  • Machine tool spindle
  • Calibration
  • Verification