A short review on selective laser melting of H13 steel


In this review, the present situation of H13 tool steel formed by selective laser melting (SLM) is introduced in detail. This review shows the current academic exploration and achievements in this field through the three aspects of microstructure, defects, and mechanical properties. We presented the distribution of the alloy elements and the different crystal morphology. We summarize the main defects of this alloy prepared by SLM from three aspects: the rough surface, cracks, and low density. The mechanical properties of H13 tool steel formed by SLM are also introduced. All in all, it shows a wide application prospect of SLMed H13 steel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Yan J-J, Chen M-T, Quach W-M, Yan M, Young B (2019) Mechanical properties and cross-sectional behavior of additively manufactured high strength steel tubular sections. Thin-Walled Struct 144:106158

    Article  Google Scholar 

  2. 2.

    Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169

    Article  Google Scholar 

  3. 3.

    Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284

    Article  Google Scholar 

  4. 4.

    Yan J, Zhou Y, Gu R; Zhang X, Quach W.-M., Yan M (2019) A comprehensive study of steel powders (316 L, H13, P20 and 18Ni300) for their selective laser melting additive manufacturing. Metals 9, (1).

  5. 5.

    Mazur M (2016) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22(3):504–518

    Article  Google Scholar 

  6. 6.

    Al-Jamal OM, Hinduja S, Li L (2008) Characteristics of the bond in Cu–H13 tool steel parts fabricated using SLM. CIRP Ann 57(1):239–242

    Article  Google Scholar 

  7. 7.

    Childs THC, Hauser C, Badrossamay M (2004) Mapping and modelling single scan track formation in direct metal selective laser melting. CIRP Ann 53(1):191–194

    Article  Google Scholar 

  8. 8.

    Rombouts M, Kruth JP, Froyen L, Mercelis P (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann 55(1):187–192

    Article  Google Scholar 

  9. 9.

    Kruth JP, Froyen L, Rombouts M, Van Vaerenbergh J, Mercells P (2003) New ferro powder for selective laser sintering of dense parts. CIRP Ann 52(1):139–142

    Article  Google Scholar 

  10. 10.

    Delgado J, Ciurana J, Rodríguez CA (2011) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60(5-8):601–610

    Article  Google Scholar 

  11. 11.

    Kadirgama K, Harun WSW, Tarlochan F, Samykano M, Ramasamy D, Azir MZ, Mehboob H (2018) Statistical and optimize of lattice structures with selective laser melting (SLM) of Ti6AL4V material. Int J Adv Manuf Technol 97(1-4):495–510

    Article  Google Scholar 

  12. 12.

    Gümrük R, Mines RAW, Karadeniz S (2018) Determination of strain rate sensitivity of micro-struts manufactured using the selective laser melting method. J Mater Eng Perform 27(3):1016–1032

    Article  Google Scholar 

  13. 13.

    Demir AG, Colombo P, Previtali B (2017) From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: effect of temporal and spatial pulse overlap in part quality. Int J Adv Manuf Technol 91(5-8):2701–2714

    Article  Google Scholar 

  14. 14.

    Lee J, Choe J, Park J, Yu J-H, Kim S, Jung ID, Sung H (2019) Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions. Mater Charact 155:109817

    Article  Google Scholar 

  15. 15.

    Ren B, Lu D, Zhou R, Li Z, Guan J (2019) Preparation and mechanical properties of selective laser melted H13 steel. J Mater Res 34(08):1415–1425

    Article  Google Scholar 

  16. 16.

    Reggiani B, Todaro I (2019) Investigation on the design of a novel selective laser melted insert for extrusion dies with conformal cooling channels. Int J Adv Manuf Technol 104(1-4):815–830

    Article  Google Scholar 

  17. 17.

    Nguyen VL, Kim E-a, Yun J, Choe J, Yang D-y, Lee H-s, Lee C-w, Yu J-H (2018) Nano-mechanical behavior of H13 tool steel fabricated by a selective laser melting method. Metall Mater Trans A 50(2):523–528

    Article  Google Scholar 

  18. 18.

    Narvan M, Al-Rubaie KS, Elbestawi M (2019) Process-structure-property relationships of AISI H13 tool steel processed with selective laser melting. Materials (Basel) 12:(14).

  19. 19.

    Chen H, Gu D, Dai D, Ma C, Xia M (2017) Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Mater Sci Eng A 682:279–289

    Article  Google Scholar 

  20. 20.

    Torres RD, Soares PC, Schmitz C, Siqueira CJM (2010) Influence of the nitriding and TiAlN/TiN coating thickness on the sliding wear behavior of duplex treated AISI H13 steel. Surf Coat Technol 205(5):1381–1385

    Article  Google Scholar 

  21. 21.

    Castro G, Fernández-Vicente A, Cid J (2007) Influence of the nitriding time in the wear behaviour of an AISI H13 steel during a crankshaft forging process. Wear 263(7-12):1375–1385

    Article  Google Scholar 

  22. 22.

    Kariofillis GK, Kiourtsidis GE, Tsipas DN (2006) Corrosion behavior of borided AISI H13 hot work steel. Surf Coat Technol 201(1-2):19–24

    Article  Google Scholar 

  23. 23.

    Qin Q, Chen GX (2013) Microstructure and mechanical property analysis of the metal part by SLM. Appl Mech Mater 423-426:693–698

    Article  Google Scholar 

  24. 24.

    Mertens R, Vrancken B, Holmstock N, Kinds Y, Kruth JP, Van Humbeeck J (2016) Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts. Phys Procedia 83:882–890

    Article  Google Scholar 

  25. 25.

    Lee J-H, Jang J-H, Joo B-D, Son Y-M, Moon Y-H (2009) Laser surface hardening of AISI H13 tool steel. Trans Nonferrous Metals Soc China 19(4):917–920

    Article  Google Scholar 

  26. 26.

    Du Y, Liu XH, Fu B, Shaw TM, Lu M, Wassick TA, Bonilla G, Lu H (2016) Creep characterization of solder bumps using nanoindentation. Mech Time-Dependent Mater 21(3):287–305

    Article  Google Scholar 

  27. 27.

    Papadakis L, Chantzis D, Salonitis K (2017) On the energy efficiency of pre-heating methods in SLM/SLS processes. Int J Adv Manuf Technol 95(1-4):1325–1338

    Article  Google Scholar 

  28. 28.

    Kurzynowski T, Stopyra W, Gruber K, Ziolkowski G, Kuznicka B, Chlebus E (2019) Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimens size. Materials (Basel) 12:(2)

  29. 29.

    Jung ID, Choe J, Yun J, Yang S, Yang DY, Kim YJ, & Yu JH (2019) Dual speed laser remelting for high densification in H13 tool steel metal 3D Printingpdf. Arch Metall Mater 64.

  30. 30.

    Rami A, Kallel A, Djemaa S, Mabrouki T, Sghaier S, Hamdi H (2018) Numerical assessment of residual stresses induced by combining turning-burnishing (CoTuB) process of AISI 4140 steel using 3D simulation based on a mixed approach. Int J Adv Manuf Technol 97(5-8):1897–1912

    Article  Google Scholar 

  31. 31.

    Gu D, Hagedorn Y-C, Meiners W, Meng G, Batista RJS, Wissenbach K, Poprawe R (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60(9):3849–3860

    Article  Google Scholar 

  32. 32.

    Attar H, K. G. P, Chaubey AK, Calin M (2014) Comparison of wear properties of commercially pure titanium prepared by selective laser melting. Mater Lett 142:38–41

    Article  Google Scholar 

  33. 33.

    AlMangour B, Grzesiak D, Yang J-M (2017) Selective laser melting of TiB 2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment. J Mater Process Technol 244:344–353

    Article  Google Scholar 

  34. 34.

    Saeidi K, Gao X, Lofaj F, Kvetková L, Shen ZJ (2015) Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting. J Alloys Compd 633:463–469

    Article  Google Scholar 

  35. 35.

    Yan JJ, Zheng DL, Li HX, Jia X, Sun JF, Li YL, Qian M, Yan M (2017) Selective laser melting of H13: microstructure and residual stress. J Mater Sci 52(20):12476–12485

    Article  Google Scholar 

  36. 36.

    Chen H, Gu D, Dai D, Xia M, Ma C (2018) A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting. Mater Lett 227:128–131

    Article  Google Scholar 

  37. 37.

    Deirmina F, AlMangour B, Grzesiak D, Pellizzari M (2018) H13–partially stabilized zirconia nanocomposites fabricated by high-energy mechanical milling and selective laser melting. Mater Des 146:286–297

    Article  Google Scholar 

  38. 38.

    Azizi H, Ghiaasiaan R, Prager R, Ghoncheh MH, Samk KA, Lausic A, Byleveld W, Phillion AB (2019) Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting. Addit Manuf 27:389–397

    Google Scholar 

  39. 39.

    Mertens RVB, Holmstock N, Kinds Y, Kruth JP (2016) Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts. Phys Procedia 83:882–890

    Article  Google Scholar 

  40. 40.

    Nguyen V, Kim E-a, Lee S.-R, Yun J, Choe J, Yang D-y, Lee, H.-s, Lee, C.-w, Yu J.-H. (2018) Evaluation of strain-rate sensitivity of selective laser melted H13 tool steel using nanoindentation tests. Metals 8(8).

  41. 41.

    Wang M, Li W, Wu Y, Li S, Cai C, Wen S, Wei Q, Shi Y, Ye F, Chen Z (2018) High-temperature properties and microstructural stability of the AISI H13 hot-work tool steel processed by selective laser melting. Metall Mater Trans B 50(1):531–542

    Article  Google Scholar 

  42. 42.

    AlMangour B, Grzesiak D, Yang J-M (2016) Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater Des 96:150–161

    Article  Google Scholar 

  43. 43.

    AlMangour B, Yu F, Yang J-M, Grzesiak D (2017) Selective laser melting of TiC/H13 steel bulk-form nanocomposites with variations in processing parameters. MRS Communications 7(1):84–89

    Article  Google Scholar 

  44. 44.

    Fischer P, Romano V, Weber HP, Karapatis NP, Boillat E, Glardon R (2003) Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 51(6):1651–1662

    Article  Google Scholar 

  45. 45.

    Harrison NJ, Todd I, Mumtaz K (2015) Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach. Acta Mater 94:59–68

    Article  Google Scholar 

  46. 46.

    Garibaldi M, Ashcroft I, Simonelli M, Hague R (2016) Metallurgy of high-silicon steel parts produced using Selective Laser Melting. Acta Mater 110:207–216

    Article  Google Scholar 

  47. 47.

    Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Mater 58(9):3303–3312

    Article  Google Scholar 

  48. 48.

    Primig S, Leitner H (2011) Separation of overlapping retained austenite decomposition and cementite precipitation reactions during tempering of martensitic steel by means of thermal analysis. Thermochim Acta 526(1-2):111–117

    Article  Google Scholar 

  49. 49.

    Mazur M, Brincat P, Leary M, Brandt M (2017) Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol 93(1-4):881–900

    Article  Google Scholar 

  50. 50.

    Taheri H, Shoaib MRBM, Koester LW, Bigelow TA, Collins PC; Bond LJ (2017) Powder-based additive manufacturing-a review of types of defects, generation mechanisms, detection, property evaluation and metrology. International Journal of Additive and Subtractive Materials Manufacturing 1(2).

  51. 51.

    Kempen KVB, Buls S, Thijs L, Van Humbeeck J, Kruth JP (2014) Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. Manuf SciEng:136

  52. 52.

    Gu D, Shen Y (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30(8):2903–2910

    Article  Google Scholar 

  53. 53.

    Kruth JPFL, Van Vaerenbergh, J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. Mater Process Technol 149, (616-622).

  54. 54.

    Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture. Mater Des 34:753–758

    Article  Google Scholar 

  55. 55.

    Khan M, Dickens P (2010) Selective laser melting (SLM) of pure gold. onAcademic 43(2):114–121

    Google Scholar 

  56. 56.

    Wang L-z, Wang S, Wu J-j (2017) Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol 96:88–96

    Article  Google Scholar 

  57. 57.

    Zhang J, Song B, Wei Q, Bourell D, Shi Y (2019) A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 35(2):270–284

    Article  Google Scholar 

  58. 58.

    Mukesh Agarwala DB, Beaman J, Marcus H, Barlow J (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1:26–36

    Article  Google Scholar 

  59. 59.

    Saeidi K, Gao X, Zhong Y, Shen ZJ (2015) Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A 625:221–229

    Article  Google Scholar 

  60. 60.

    Deirmina F, Peghini N, AlMangour B, Grzesiak D, Pellizzari M (2019) Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater Sci Eng A 753:109–121

    Article  Google Scholar 

  61. 61.

    Ackermann M, Šafka J, Voleský L, Bobek J, Kondapally JR (2018) Impact testing of H13 tool steel processed with use of selective laser melting technology. Mater Sci Forum 919:43–51

    Article  Google Scholar 

  62. 62.

    Joo B-D, Jang J-H, Lee J-H, Son Y-M, Moon Y-H (2009) Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel. Trans Nonferrous Metals Soc China 19(4):921–924

    Article  Google Scholar 

  63. 63.

    Dadbakhsh S, Hao L (2012) Effect of hot isostatic pressing (HIP) on Al composite parts made from laser consolidated Al/Fe2O3 powder mixtures. J Mater Process Technol 212(11):2474–2483

    Article  Google Scholar 

  64. 64.

    Simchi A (2004) Asgharzadeh, H, Densification and microstructural evaluation during laser sintering of m2 high speed steel powder. Mater Sci Technol 20(11):1462–1468

    Article  Google Scholar 

  65. 65.

    Santos L, de Jesus J, Ferreira J, Costa J, Capela C (2018) Fracture toughness of hybrid components with selective laser melting 18Ni300 steel parts. Appl Sci 8(10).

  66. 66.

    Badrossamay M, Childs THC (2007) Further studies in selective laser melting of stainless and tool steel powders. Int J Mach Tools Manuf 47(5):779–784

    Article  Google Scholar 

  67. 67.

    Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T (2015) Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall Mater Trans B 46(2):545–549

    Article  Google Scholar 

  68. 68.

    Zhang JSB, Wei Q, Bourell D (2019) A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 35(2):270–284

    Article  Google Scholar 

  69. 69.

    Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210(12):1624–1631

    Article  Google Scholar 

  70. 70.

    Breidenstein B, Brenne F, Wu L, Niendorf T, Denkena B (2018) Effect of post-process machining on surface properties of additively manufactured H13 tool steel. HTM J Heat Treatment Mater 73(4):173–186

    Article  Google Scholar 

  71. 71.

    Tong X, Dai M-j, Zhang Z-h (2013) Thermal fatigue resistance of H13 steel treated by selective laser surface melting and CrNi alloying. Appl Surf Sci 271:373–380

    Article  Google Scholar 

  72. 72.

    Körperich JP, Merkel M (2018) Thermographic analysis of the building height impact on the properties of tool steel in selective laser beam melting. Mater Werkst 49(5):689–695

    Article  Google Scholar 

Download references


In particular, I would like to thank Dr. Chaoqun Zhang of Shanghai Jiaotong University for his help.

Author information



Corresponding author

Correspondence to Jintao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, S., Fang, Y. et al. A short review on selective laser melting of H13 steel. Int J Adv Manuf Technol 108, 2453–2466 (2020). https://doi.org/10.1007/s00170-020-05584-4

Download citation


  • SLM
  • 3D print
  • AM
  • H13 steel
  • Defects