Grinding behavior of austempered ductile iron: a study about the effect of pure and diluted MQL technique applying different friability wheels

Abstract

Abrasion machining has stood out in the current industry due to constant improvements in the dimensional accuracy of a workpiece in its finishing process. Thus, it is necessary to use cutting fluid to cool and lubricate the workpiece-wheel contact, to reduce both the high temperatures reached and the friction. However, conventional cutting fluid is harmful to the environment and poses a risk to the operator’s health. As a result, the minimum lubricant quantity (MQL) technique emerged, using extremely smaller amounts of fluid and, however, showing excellent results in its applications. In this way, it could further optimize this method through studies on oil dilution, combating low cooling capacity. A fundamental concept for selecting the grinding wheel type to be used in grinding is friability, but there are few studies on its influence on the process. For these reasons, this research analyzed the impact of friability and the effects of MQL dilution on the grinding of austempered ductile iron, the use of two CBN wheels with high and low friability, and four types of lubri-refrigerant methods: flood, pure MQL, and diluted MQL in the oil-water ratio 1:5 and 1:10. Output parameters were analyzed: surface roughness (Ra), roundness error, diametrical wheel wear, cutting power, acoustic emission, viscosity, 3D confocal, and microhardness. The results show an improvement of the diluted MQL over the pure, coming close to the conventional method. Besides, the low friability wheel was more efficient in the analysis of surface roughness, roundness error, and diametrical wheel wear. However, most friable stood out in the results of acoustic emission and grinding power.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with Abrasives, 2aed. Industrial Press Inc, New York

    Google Scholar 

  2. 2.

    Garcia MV, Lopes JC, Diniz AE, Rodrigues AR, Volpato RS, Sanchez LEA, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding performance of bearing steel using MQL under different dilutions and wheel cleaning for green manufacture. J Clean Prod 257:120376. https://doi.org/10.1016/j.jclepro.2020.120376

    Article  Google Scholar 

  3. 3.

    Marinescu ID, Hitchiner M, Uhlmann E, Rowe WB (2007) Handbook of machining with grinding wheels, 1st edn. CRC Press, New York

    Google Scholar 

  4. 4.

    Rodriguez RL, Lopes JC, Garcia MV, Tarrento GE, Rodrigues AR, de Ângelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding process applied to workpieces with different geometries interrupted using CBN wheel. Int J Adv Manuf Technol 107:1265–1275. https://doi.org/10.1007/s00170-020-05122-2

    Article  Google Scholar 

  5. 5.

    Ren YH, Zhang B, Zhou ZX Specific energy in grinding of tungsten carbides of various grain sizes. CIRP Ann 58:299–302

  6. 6.

    Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, da Silva RB, de Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916. https://doi.org/10.1007/s00170-017-1396-5

    Article  Google Scholar 

  7. 7.

    Wegener K, Hoffmeister H, Karpuschewski B et al (2011) CIRP Annals - manufacturing technology conditioning and monitoring of grinding wheels. CIRP Ann - Manuf Technol 60:757–777. https://doi.org/10.1016/j.cirp.2011.05.003

    Article  Google Scholar 

  8. 8.

    Sato BK, Rodriguez RL, Talon AG, Lopes JC, Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance of AISI D6 steel using CBN wheel vitrified and resinoid bonded. Int J Adv Manuf Technol 105:2167–2182. https://doi.org/10.1007/s00170-019-04407-5

    Article  Google Scholar 

  9. 9.

    Buj-Corral I, Vivancos-Calvet J (2013) Improvement of the manufacturing process of abrasive stones for honing. Int J Adv Manuf Technol 68:2517–2523. https://doi.org/10.1007/s00170-013-4854-8

    Article  Google Scholar 

  10. 10.

    Oliveira JFG, Silva EJ, Guo C, Hashimoto F (2009) Industrial challenges in grinding. CIRP Ann - Manuf Technol 58:663–680. https://doi.org/10.1016/j.cirp.2009.09.006

    Article  Google Scholar 

  11. 11.

    Cai R, Rowe WB (2004) Assessment of vitrified CBN wheels for precision grinding. Int J Mach Tools Manuf 44:1391–1402. https://doi.org/10.1016/j.ijmachtools.2004.04.004

    Article  Google Scholar 

  12. 12.

    Lopes JC, Fragoso KM, Garcia MV, Ribeiro FSF, Francelin AP, de Angelo Sanchez LE, Rodrigues AR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. Int J Adv Manuf Technol 105:4373–4387. https://doi.org/10.1007/s00170-019-04571-8

    Article  Google Scholar 

  13. 13.

    de Mello HJ, de Mello DR, Rodriguez RL, Lopes JC, da Silva RB, de Angelo Sanchez LE, Hildebrandt RA, Aguiar PR, Bianchi EC (2018) Contribution to cylindrical grinding of interrupted surfaces of hardened steel with medium grit wheel. Int J Adv Manuf Technol 95:4049–4057. https://doi.org/10.1007/s00170-017-1552-y

    Article  Google Scholar 

  14. 14.

    Lavisse B, Lefebvre A, Torrance AAA et al (2018) The effects of the flow rate and speed of lubricoolant jets on heat transfer in the contact zone when grinding a nitrided steel. J Manuf Process 35:233–243. https://doi.org/10.1016/j.jmapro.2018.07.029

    Article  Google Scholar 

  15. 15.

    de Martini FL, Lopes JC, Ribeiro FSF et al (2019) Thermal model for surface grinding application. Int J Adv Manuf Technol 104:2783–2793. https://doi.org/10.1007/s00170-019-04101-6

    Article  Google Scholar 

  16. 16.

    de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, de Angelo Sanchez LE, Foschini CR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Performance of SAE 52100 steel grinding using MQL technique with pure and diluted oil. Int J Adv Manuf Technol 105:4211–4223. https://doi.org/10.1007/s00170-019-04582-5

    Article  Google Scholar 

  17. 17.

    Rowe WB (2014) Principles of modern grinding technology. Elsevier

  18. 18.

    Alexandre FA, Lopes WN, Lofrano Dotto FR, Ferreira FI, Aguiar PR, Bianchi EC, Lopes JC (2018) Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model. Int J Adv Manuf Technol 96:67–79. https://doi.org/10.1007/s00170-018-1582-0

    Article  Google Scholar 

  19. 19.

    da Silva LR, Bianchi EC, Fusse RY, Catai RE, França TV, Aguiar PR (2007) Analysis of surface integrity for minimum quantity lubricant-MQL in grinding. Int J Mach Tools Manuf 47:412–418. https://doi.org/10.1016/j.ijmachtools.2006.03.015

    Article  Google Scholar 

  20. 20.

    Silva LR, Corrêa ECS, Brandão JR, de Ávila RF (2020) Environmentally friendly manufacturing: behavior analysis of minimum quantity of lubricant - MQL in grinding process. J Clean Prod 256:103287. https://doi.org/10.1016/j.jclepro.2013.01.033

    Article  Google Scholar 

  21. 21.

    Brinksmeier E, Meyer D, Huesmann-Cordes AG, Herrmann C (2015) Metalworking fluids - mechanisms and performance. CIRP Ann - Manuf Technol 64:605–628. https://doi.org/10.1016/j.cirp.2015.05.003

    Article  Google Scholar 

  22. 22.

    Sato BK, Lopes JC, Diniz AE, Rodrigues AR, de Mello HJ, Sanchez LEA, Aguiar PR, Bianchi EC (2020) Toward sustainable grinding using minimum quantity lubrication technique with diluted oil and simultaneous wheel cleaning. Tribol Int 147:106276. https://doi.org/10.1016/j.triboint.2020.106276

    Article  Google Scholar 

  23. 23.

    Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stöckert S, Rasifard A (2009) An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication-MQL grinding. Int J Mach Tools Manuf 49:924–932. https://doi.org/10.1016/j.ijmachtools.2009.06.015

    Article  Google Scholar 

  24. 24.

    Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek BT (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42:159–166. https://doi.org/10.1016/j.jclepro.2012.11.003

    Article  Google Scholar 

  25. 25.

    Chetan GS, Venkateswara Rao P (2015) Application of sustainable techniques in metal cutting for enhanced machinability: a review. J Clean Prod 100:17–34. https://doi.org/10.1016/j.jclepro.2015.03.039

    Article  Google Scholar 

  26. 26.

    Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann 55:667–696. https://doi.org/10.1016/j.cirp.2006.10.003

    Article  Google Scholar 

  27. 27.

    Nie Z, Wang G, Wang L, Rong Y (Kevin) (2019) A coupled thermomechanical modeling method for predicting grinding residual stress based on randomly distributed abrasive grains. J Manuf Sci Eng 141:. https://doi.org/10.1115/1.4043799141

  28. 28.

    Nie Z, Wang G, Liu D, Rong Y(K) (2018) A statistical model of equivalent grinding heat source based on random distributed grains. J Manuf Sci Eng 140:140. https://doi.org/10.1115/1.4038729

    Article  Google Scholar 

  29. 29.

    Doman DA, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49:109–116. https://doi.org/10.1016/j.ijmachtools.2008.10.002

    Article  Google Scholar 

  30. 30.

    Alexandre FA, Lopes JC, de Martini FL et al (2020) Depth of dressing optimization in CBN wheels of different friabilities using acoustic emission (AE) technique. Int J Adv Manuf Technol. 106:5225–5240. https://doi.org/10.1007/s00170-020-04994-8

    Article  Google Scholar 

  31. 31.

    da Silva AE, Lopes JC, Daniel DM et al (2020) Behavior of austempered ductile iron (ADI) grinding using different MQL dilutions and CBN wheels with low and high friability. Int J Adv Manuf Technol:1–15. https://doi.org/10.1007/s00170-020-05347-1

  32. 32.

    Lopes JC, Garcia MV, Valentim M, Javaroni RL, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet. Int J Adv Manuf Technol 105:4429–4442. https://doi.org/10.1007/s00170-019-04574-5

    Article  Google Scholar 

  33. 33.

    Ribeiro FSF, Lopes JC, Garcia MV et al (2020) Grinding performance by applying MQL technique: an approach of the wheel cleaning jet compared with wheel cleaning Teflon and Alumina block. Int J Adv Manuf Technol:1–12. https://doi.org/10.1007/s00170-020-05334-6

  34. 34.

    Rodriguez RL, Lopes JC, Mancini SD, de Ângelo Sanchez LE, de Almeida Varasquim FMF, Volpato RS, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Contribution for minimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol 103:487–497. https://doi.org/10.1007/s00170-019-03529-0

    Article  Google Scholar 

  35. 35.

    Aggarwal A, Singh H, Kumar P, Singh M (2008) Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function. J Mater Process Technol 205:42–50. https://doi.org/10.1016/j.jmatprotec.2007.11.105

    Article  Google Scholar 

  36. 36.

    Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  37. 37.

    MacAdam J, Ozgencil H, Autin O, Pidou M, Temple C, Parsons S, Jefferson B (2012) Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids. Environ Technol (United Kingdom) 33:2741–2750. https://doi.org/10.1080/09593330.2012.678389

    Article  Google Scholar 

  38. 38.

    Li CH, Li JY, Wang S (2013) Zhang Q (2013) Modeling and numerical simulation of the grinding temperature field with nanoparticle Jet of MQL. Adv Mech Eng 5:986984. https://doi.org/10.1155/2013/986984

    Article  Google Scholar 

  39. 39.

    Silva LR, Bianchi EC, Catai RE, Fusse RY, França TV, Aguiar PR (2005) Study on the behavior of the minimum quantity lubricant - MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel. J Brazilian Soc Mech Sci Eng 27:192–199. https://doi.org/10.1590/S1678-58782005000200012

    Article  Google Scholar 

  40. 40.

    Cameron A, Bauer R, Warkentin A (2010) An investigation of the effects of wheel-cleaning parameters in creep-feed grinding. Int J Mach Tools Manuf 50:126–130. https://doi.org/10.1016/j.ijmachtools.2009.08.008

    Article  Google Scholar 

  41. 41.

    Bianchi EC, Sato BK, Sales AR, Lopes JC, de Mello HJ, de Angelo Sanchez LE, Diniz AE, Aguiar PR (2018) Evaluating the effect of the compressed air wheel cleaning in grinding the AISI 4340 steel with CBN and MQL with water. Int J Adv Manuf Technol 95:2855–2864. https://doi.org/10.1007/s00170-017-1433-4

    Article  Google Scholar 

  42. 42.

    Belentani R d M, Funes Júnior H, Canarim RC et al (2013) Utilization of minimum quantity lubrication (MQL) with water in CBN grinding of steel. Mater Res 17:88–96. https://doi.org/10.1590/s1516-14392013005000165

    Article  Google Scholar 

  43. 43.

    Groover MP & Groover MP (2012) Introduction to manufacturing processes.

  44. 44.

    Marinescu ID, Doi TK, Eckart U (2015) Handbook of ceramics grinding and polishing, 2nd edn. Elsevier

  45. 45.

    Stephenson, DA AJ (2016) Metal cutting theory and practice, Trird edit

    Google Scholar 

  46. 46.

    Lopes JC, de Martini FL, Domingues BB et al (2019) Effect of CBN grain friability in hardened steel plunge grinding. Int J Adv Manuf Technol 103:1567–1577. https://doi.org/10.1007/s00170-019-03654-w

    Article  Google Scholar 

  47. 47.

    Linke B (2016) Life cycle and sustainability of abrasive tools. Springer International Publishing, Cham

    Google Scholar 

  48. 48.

    SAINT-GOBAIN, Cubic Boron Nitride Mesh - Engineered Particles. https://www.surfaceconditioning.saint-gobain.com/products/cubic-boron-nitride-mesh. Accessed 21 Jan 2020

  49. 49.

    Lopes JC, Ventura CEH, Rodriguez RL, Talon AG, Volpato RS, Sato BK, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Application of minimum quantity lubrication with addition of water in the grinding of alumina. Int J Adv Manuf Technol 97:1951–1959. https://doi.org/10.1007/s00170-018-2085-8

    Article  Google Scholar 

  50. 50.

    Rodriguez RL, Lopes JC, Hildebrandt RA, Perez RRV, Diniz AE, de Ângelo Sanchez LE, Rodrigues AR, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Evaluation of grinding process using simultaneously MQL technique and cleaning jet on grinding wheel surface. J Mater Process Technol 271:357–367. https://doi.org/10.1016/j.jmatprotec.2019.03.019

    Article  Google Scholar 

  51. 51.

    Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, de Aguiar PR, da Silva RB, Jackson MJ (2019) Application of the auxiliary wheel cleaning jet in the plunge cylindrical grinding with minimum quantity lubrication technique under various flow rates. Proc Inst Mech Eng Part B J Eng Manuf 233:1144–1156. https://doi.org/10.1177/0954405418774599

    Article  Google Scholar 

  52. 52.

    King RI, Hahn RS, Devereux OF (2009) Handbook of modern grinding technology. J Eng Mater Technol. 109:353. https://doi.org/10.1115/1.3225989

    Article  Google Scholar 

  53. 53.

    de Martini FL, Lopes JC, Volpato RS et al (2018) Comparative analysis of two CBN grinding wheels performance in nodular cast iron plunge grinding. Int J Adv Manuf Technol 98:237–249. https://doi.org/10.1007/s00170-018-2133-4

    Article  Google Scholar 

  54. 54.

    Javaroni RL, Lopes JC, Sato BK, Sanchez LEA, Mello HJ, Aguiar PR, Bianchi EC (2019) Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int J Adv Manuf Technol 103:2809–2819. https://doi.org/10.1007/s00170-019-03697-z

    Article  Google Scholar 

  55. 55.

    Talon AG, Lopes JC, Tavares AB, Sato BK, Rodrigues AR, Genovez MC, Dinis Pinto TA, de Mello HJ, Aguiar PR, Bianchi EC (2019) Effect of hardened steel grinding using aluminum oxide wheel under application of cutting fluid with corrosion inhibitors. Int J Adv Manuf Technol 104:1437–1448. https://doi.org/10.1007/s00170-019-04005-5

    Article  Google Scholar 

  56. 56.

    Benedicto E, Carou D, Rubio EM (2017) Technical, economic and environmental review of the lubrication/cooling systems used in machining processes. In: Procedia Engineering. The Author(s), pp 99–116

  57. 57.

    Hadad MJJ, Tawakoli T, Sadeghi MHH, Sadeghi B (2012) Temperature and energy partition in minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 54–55:10–17. https://doi.org/10.1016/j.ijmachtools.2011.11.010

    Article  Google Scholar 

  58. 58.

    Schwarz M, Dado M, Hnilica R, Veverková D (2015) Environmental and health aspects of metalworking fluid use. Polish J Environ Stud 24:37–45

    Google Scholar 

  59. 59.

    Javaroni RL, Lopes JC, Garcia MV, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding hardened steel using MQL associated with cleaning system and cBN wheel. Int J Adv Manuf Technol 107:2065–2080. https://doi.org/10.1007/s00170-020-05169-1

    Article  Google Scholar 

  60. 60.

    Lopes JC, Ventura CEH, de M. Fernandes L, et al (2019) Application of a wheel cleaning system during grinding of alumina with minimum quantity lubrication. Int J Adv Manuf Technol 102:333–341. https://doi.org/10.1007/s00170-018-3174-4

  61. 61.

    Lopes JC, de Martini FL, Garcia MV et al (2020) Performance of austempered ductile iron (ADI) grinding using diluted oil in MQL combined with wheel cleaning jet and different CBN grains friability. Int J Adv Manuf Technol 107:1805–1818. https://doi.org/10.1007/s00170-020-05142-y

    Article  Google Scholar 

  62. 62.

    Lopes JC, Garcia MV, Volpato RS, de Mello HJ, Ribeiro FSF, de Angelo Sanchez LE, de Oliveira Rocha K, Neto LD, Aguiar PR, Bianchi EC (2019) Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. Int J Adv Manuf Technol. 106:2205–2218. https://doi.org/10.1007/s00170-019-04760-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank companies Nikkon Ferramentas de Corte Ltda – Saint-Gobain Group for providing the grinding wheel and ITW Chemical Products for the donation the cutting fluids, and the authors thank everyone for supporting the research and opportunity for scientific and technological development.

Funding

The authors thank São Paulo Research Foundation (FAPESP) processes 2016/23910-0, 2018/22661-2, and 2019/24933-2; CAPES (Coordination for the Improvement of Higher Level Education Personnel); and CNPq (National Council for Scientific and Technological Development) for their financial support of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Carlos Bianchi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moretti, G.B., de Moraes, D.L., Garcia, M.V. et al. Grinding behavior of austempered ductile iron: a study about the effect of pure and diluted MQL technique applying different friability wheels. Int J Adv Manuf Technol 108, 3661–3673 (2020). https://doi.org/10.1007/s00170-020-05577-3

Download citation

Keywords

  • Grinding
  • Pure MQL
  • Diluted MQL
  • Friability
  • Austempered ductile iron