Volumetric error compensation of machine tool using laser tracer and machining verification

Abstract

Volumetric error is a primary factor that affects the accuracy of machining tools. The ability to ascertain volumetric error in a rapid and simple manner is of significant importance, and this can remarkably reduce the probability of temperature variation during the experiment. This study proposes a strategy for volumetric error measurement and compensation based on laser tracer for the 3-axis numerical control (NC) machining tool, and verifies the machining accuracy of a concave semi-spheroid test piece. In this study, the calibration methods employed by the laser tracer and the error separation algorithm of the machining tool are initially investigated. Following this, the accuracy of the geometric error measurement is verified using the laser interferometer. The cubic spline interpolation method is then employed to establish the tool path volumetric error model in the 3-axis NC machining tool, and the G-code modification is conducted for volumetric error compensation. Experiment results show that when the error compensation is performed, the improvement in the accuracy as compared with the initial state exceeds 50% not involving machining. To evaluate the accuracy and effectiveness of the proposed method, two machining tests to obtain a concave semi-spheroid test piece with and without volumetric error compensation strategy are studied, and the corresponding accuracies are measured by a high precision coordinate–measuring machine. It is found that the machining accuracy after having performed the error compensation is approximately 43% higher than that obtained on the pre-volumetric error compensation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

Ai(xi,yi,zi),:

Theoretical measuring point, i = 0,1,2,…, N

Ai' (xi',yi',zi' ):

Calibration of measuring point

bi,ci :

Integration constants

C :

\( {x}_{p1}^2+{y}_{p1}^2+{z}_{p1}^2-{L}_1^2 \)

D :

Coefficient matrix

E i :

Expanded form of geometric error function

h i :

xi − xi−1

j :

Measurement sequence of laser tracer

l 1i :

Measured length values from P1 to ith measuring point

L 1 :

Residual error

M i :

Undermined function expression

Pi(xpi, ypi, zpi):

Location of laser tracer, i = 1,2,…,6

Q i :

21 individual errors at point Ai

R(i) :

xi, Δyi, Δzi]T

S :

Distance between laser tracer and measuring point

S xy :

Perpendicularity error between X- and Y-axis

S xz :

Perpendicularity error between X- and Z-axis

S yz :

Perpendicularity error between Y- and Z-axis

S(xi−1):

y i−1

S(xi):

y i

S″(xi):

Second-order derivation of the fitting function at the knot xi

tx,ty,tz :

Cutting tool length in x/y/z direction, tx = 0 and ty = 0

δ xx :

Positioning error of X-axis

δ xy :

Straightness error of Y-axis in X direction

δ xz :

Straightness error of Z-axis in X direction

δ yx :

Straightness error of X-axis in Y direction

δ yy :

Positioning error of Y-axis

δ yz :

Straightness error of Z-axis in Y direction

δ zx :

Straightness error of X-axis in Z direction

δ zy :

Straightness error of Y-axis in Z direction

δ zz :

Positioning error of Z-axis

∆L j :

Error of measured length between laser tracer and measuring point

∆p 1 :

xp1, Δyp1, Δzp1]

ΔRi(Δxi,Δyi,Δzi):

Coordinate error of measuring points

xi :

xixi

yi :

yiyi

∆z i :

zizi

ε xx :

Roll error of X-axis

ε xy :

Pitch error of Y-axis

ε xz :

Pitch error of Z-axis

ε yx :

Pitch error of X-axis

ε yy :

Roll error of Y-axis

ε yz :

Yaw error of Z-axis

ε zx :

Yaw error of X-axis

ε zy :

Yaw error of Y-axis

ε zz :

Roll error of Z-axis

References

  1. 1.

    Gao WG, Weng LT, Zhang JY, Tian WJ, Zhang GW, Zheng YJ, Li JH (2020) An improved machine tool volumetric error compensation method based on linear and squareness error correction method. J Adv Manuf Technol 106:4731–4744

    Article  Google Scholar 

  2. 2.

    Li QZ, Wang W, Zhang J, Shen R, Li H, Jiang Z (2019) Measurement method for volumetric error of five-axis machine tool considering measurement point distribution and adaptive identification process. Int J Mach Tool Manu 147:103465

    Article  Google Scholar 

  3. 3.

    Erkan T, Mayer JRR (2010) A cluster analysis applied to volumetric errors of five-axis machine tools obtained by probing an uncalibrated artefact. CIRP Ann Manuf Techn 59(1):539–542

    Article  Google Scholar 

  4. 4.

    Wan A, Song LB, Xu J, Liu SL, Chen K (2018) Calibration and compensation of machine tool volumetric error using a laser tracker. Int J Mach Tool Manu 124:126–133

    Article  Google Scholar 

  5. 5.

    Mutilba U, Yagüe-Fabra JA, Gomez-Acedo E, Kortaberria G, Olarra A (2018) Integrated multilateration for machine tool automatic verification. CIRP Ann Manuf Techn 67(1):555–558

    Article  Google Scholar 

  6. 6.

    Jung JH, Choi JP, Lee SJ (2006) Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement. J Mater Process Technol 174(1-3):56–66

    Article  Google Scholar 

  7. 7.

    Zhong XM, Liu HQ, Mao XY, Li B (2019) An optimal method for improving volumetric error compensation in machine tools based on squareness error identification. J Precis Eng Manuf 20:1653–1665

    Article  Google Scholar 

  8. 8.

    Rahman M, Heikkala J, Lappalainen K (2000) Modeling, measurement and error compensation of multi-axis machine tools, Part I: theory. Int J Mach Tool Manu 40(10):1535–1546

    Article  Google Scholar 

  9. 9.

    Givi M, Mayer JRR (2014) Validation of volumetric error compensation for a five-axis machine using surface mismatch producing tests and on-machine touch probing. Int J Mach Tool Manu 87:89–95

    Article  Google Scholar 

  10. 10.

    Ni J, Wu SM (1993) An on-line measurement technique for machine volumetric error compensation. Trans ASME J Eng Ind 115(1):85–92

    Article  Google Scholar 

  11. 11.

    Li HM, Zhang P, Deng M, Xiang ST, Du ZC, Yang JG (2020) Volumetric error measurement and compensation of three-axis machine tools based on laser bidirectional sequential step diagonal measuring method. Meas Sci Technol 31:055201 (10 pp)

    Article  Google Scholar 

  12. 12.

    Aguado S, Samper D, Santolaria J, Aguilar JJ (2012) Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements. Int J Mach Tool Manu 53(1):160–169

    Article  Google Scholar 

  13. 13.

    Ekinci TO, Mayer JRR, Cloutier GM (2009) Investigation of accuracy of aerostatic guideways. Int J Mach Tool Manu 49(6):478–487

    Article  Google Scholar 

  14. 14.

    Ekinci TO, Mayer JRR (2007) Relationships between straightness and angular kinematic errors in machines. Int J Mach Tool Manu 47(12-13):1997–2004

    Article  Google Scholar 

  15. 15.

    Ibaraki S, Blaser P, Shimoike M, Takayama N, Nakaminami M, Ido Y (2016) Measurement of thermal influence on a two-dimensional motion trajectory using a tracking interferometer. CIRP Ann Manuf Techn 65(1):483–486

    Article  Google Scholar 

  16. 16.

    Creamer J, Sammons PM, Bristow DA, Landers RG, Freeman PL, Easley SJ (2017) Table-based volumetric error compensation of large five-axis machine tools. J Manuf Sci Eng Trans ASME 139(2):021011

    Article  Google Scholar 

  17. 17.

    Wang JD, Guo JJ (2016) Research on the base station calibration of multi-station and time-sharing measurement based on hybrid genetic algorithm. Measurement 94:139–148

    Article  Google Scholar 

  18. 18.

    Wang JD, Guo JJ (2013) Algorithm for detecting volumetric geometric accuracy of NC machine tool by Laser Tracker. Chinese J Mech Eng 26(1):166–175

    Article  Google Scholar 

  19. 19.

    Mutilba U, Gomez-Acedo E, Kortaberria G, Olarra A, Yagüe-Fabra JA (2017) Traceability of on-machine tool measurement: a review. Sensors 17(7):1605

    Article  Google Scholar 

  20. 20.

    Zhao D, Bi Y, Ke Y (2017) An efficient error compensation method for coordinated CNC five-axis machine tools. Int J Mach Tool Manu 123:105–115

    Article  Google Scholar 

  21. 21.

    Wendt K, Franke M, Härtig F (2012) Measuring large 3D structures using four portable tracking laser interferometers. Measurement 45(10):2339–2345

    Article  Google Scholar 

  22. 22.

    Mutilba U, Yagüe-Fabra JA, Gomez-Acedo E, Kortaberria G (2018) Integrated multilateration for machine tool automatic verification. CIRP Ann Manuf Techn 67(1):555–558

    Article  Google Scholar 

  23. 23.

    Zha J, Li LH, Han L, Chen YL (2020) Four-station laser tracer-based geometric error measurement of rotary table. Meas Sci Technol 31(6):065008

    Article  Google Scholar 

  24. 24.

    Muralikrishnan B, Lee V, Blackburn C, Sawyer D, Phillips S, Ren W, Hughes B (2013) Assessing ranging errors as a function of azimuth in laser trackers and tracers. Meas Sci Technol 24(6):065201

    Article  Google Scholar 

  25. 25.

    Gąska A, Krawczyk M, Kupiec R, Ostrowska K, Gąska P, Sładek J (2014) Modeling of the residual kinematic errors of coordinate measuring machines using LaserTracer system. Int J Adv Manuf Technol 73(1-4):497–507

    Article  Google Scholar 

  26. 26.

    Gąska A, Gruza M, Gąska P, Karpiuk M, Sładek J (2013) Identification and correction of coordinate measuring machine geometrical errors using laser tracer systems. Adv Sci Tech Res J 7(20):17–22

    Article  Google Scholar 

  27. 27.

    Chen HF, Jiang B, Shi ZY, Sun YQ, Song HX, Tang L (2019) Uncertainty modeling of the spatial coordinate error correction system of the CMM based on laser tracer multi-station measurement. Meas Sci Technol 30(2):025007

    Article  Google Scholar 

  28. 28.

    Lee HW, Chen JR, Pan SP, Liou HC, Hsu PE (2016) Relationship between ISO 230-2/-6 test results and positioning accuracy of machine tools using LaserTRACER. Appl Sci Basel 6(4):105

    Article  Google Scholar 

  29. 29.

    Linares JM, Chaves-Jacob J, Schwenke H, Longstaff A, Fletcher S, Flore J, Uhlmann E, Wintering J (2014) Impact of measurement procedure when error mapping and compensating a small CNC machine using a multilateration laser interferometer. Precis Eng 38(3):578–588

    Article  Google Scholar 

  30. 30.

    Ezedine F, Linares JM, Sprauel JM, Chaves-Jacob J (2016) Smart sequential multilateration measurement strategy for volumetric error compensation of an extra-small machine tool. Precis Eng 43:178–186

    Article  Google Scholar 

  31. 31.

    Liu Y, Wan M, Xing WJ, Zhang WH (2018) Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. Int J Mech Sci 145:299–317

    Article  Google Scholar 

  32. 32.

    Liu Y, Wan M, Xiao QB, Zhang WH (2019) Identification and compensation of geometric errors of rotary axes in five-axis machine tools through constructing equivalent rotary axis (ERA). Int J Mech Sci 152:211–227

    Article  Google Scholar 

  33. 33.

    Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines-An update. CIRP Ann Manuf Techn 57(2):660–675

    Article  Google Scholar 

  34. 34.

    Xiang ST, Altintas Y (2016) Modeling and compensation of volumetric errors for five-axis machine tools. Int J Mach Tool Manu 101:65–78

    Article  Google Scholar 

  35. 35.

    Chen JS, Yuan JX, Ni J, Wu XM (1993) Real time compensation for time variant volumetric errors on a machining center. J Manuf Sci Eng 115(4):472–479

    Google Scholar 

  36. 36.

    Yuan JX, Ni J (1998) The real-time error compensation technique for CNC machining systems. Mechatronics 8(4):359–380

    Article  Google Scholar 

  37. 37.

    Lee ES, Suh SH, Shon JW (1998) A comprehensive method for calibration of volumetric positioning accuracy of CNC machines. Int J Adv Manuf Technol 14(1):43–49

    Article  Google Scholar 

  38. 38.

    Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools — a review : Part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tool Manu 40(9):1235–1256

    Article  Google Scholar 

  39. 39.

    Givi M, Mayer JRR (2016) Optimized volumetric error compensation for five-axis machine tools considering relevance and compensability. CIRP J Manuf Sci Tech 12:44–55

    Article  Google Scholar 

  40. 40.

    Schwenke H, Franke M, Hannaford J, Kunzmann H (2005) Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Ann Manuf Techn 54(1):475–478

    Article  Google Scholar 

  41. 41.

    Zhang ZJ, Hu H (2013) A general strategy for geometric error identification of multi-axis machine tools based on point measurement. Int J Adv Manuf Technol 69(5-8):1483–1497

    Article  Google Scholar 

  42. 42.

    Zhou BC, Wang SL, Fang CG, Sun SL, Dai H (2017) Geometric error modeling and compensation for five-axis CNC gear profile grinding machine tools. Int J Adv Manuf Technol 3:1–14

    Google Scholar 

  43. 43.

    Ibaraki S, Kudo T, Yano T, Takatsuji T, Osawa S, Sato O (2015) Estimation of three-dimensional volumetric errors of machining centers by a tracking interferometer. Precis Eng 39:179–186

    Article  Google Scholar 

  44. 44.

    Aguado S, Santolaria J, Samper D, Aguilar JJ, Velázquez J (2016) Improving a real milling machine accuracy through an indirect measurement of its geometric errors. J Manuf Syst 40:26–36

    Article  Google Scholar 

Download references

Funding

This work was supported by the Shenzhen Science and Technology Project (JCYJ20180306170733170), Natural Science Foundation of Jiangsu Province (BK20190218), and Major National Science and Technology Projects (2018ZX04002001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Zha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zha, J., Wang, T., Li, L. et al. Volumetric error compensation of machine tool using laser tracer and machining verification. Int J Adv Manuf Technol 108, 2467–2481 (2020). https://doi.org/10.1007/s00170-020-05556-8

Download citation

Keywords

  • Error measurement
  • Laser tracer
  • Machine tool
  • Volumetric error compensation