Influence of welding interpass temperature on Charpy V-notch impact energy of coarse-grain heat-affected zone of AISI 4130 steel pipe


Increasing the welding interpass temperature (IT) can reduce the welding time and cost of welding but may degrade the quality of the welded joint. The objective of the present study was to analyze the effects of the IT on microstructure and Charpy V-notch (CVN) impact energy of coarse-grain heat-affected zone (CGHAZ) of an AISI 4130 steel welded pipe. The welding was computationally simulated using finite element method. The CGHAZ was physically simulated and evaluated via optical and scanning electron microscopy, electron backscatter diffraction analysis, Vickers microhardness, and CVN impact. The numeric model had an accuracy of 97.5% (difference in the simulated and measured maximum temperatures), with a simulated cooling rate equal to the measured value. An increase in IT changed the microstructure from bainite (B) and martensite (IT 315 °C) to B, ferrite with aligned martensite–austenite–carbide (AC), and pro-eutectoid ferrite (FP) (IT 400 °C), followed by ferrite AC, FP, ferrite with non-aligned martensite-austenite-carbide, and ferrite–carbide aggregate (IT 475 and 550 °C). These changes in microstructure significantly impacted the effective grain size and grain boundary character distribution, which directly influenced CVN impact energy of the CGHAZ. IT = 315 °C exhibited the highest CVN impact energy (89 J), and ITs ≥ 400 °C did not satisfy the ASME 31.3 code. Therefore, indiscriminately increasing the IT is unsuitable method for reducing the welding cost for AISI 4130 steel pipes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.


  1. 1.

    Barbosa LHS, Modenesi PJ, Godefroid LB, Arias AR (2019) Fatigue crack growth rates on the weld metal of high heat input submerged arc welding. Int J Fatigue 119:43–51.

    Article  Google Scholar 

  2. 2.

    Layus P, Kah P, Martikainen J, Gezha VV, Bishokov RV (2014) Multi-wire SAW of 640 MPa Arctic shipbuilding steel plates. Int J Adv Manuf Technol 75:771–782.

    Article  Google Scholar 

  3. 3.

    ASME (2016) ASME Code for Pressure Piping B31

  4. 4.

    Soldagem Rev. N. (2017) Petrobras N-133

  5. 5.

    Neves J, Loureiro A (2004) Fracture toughness of welds—effect of brittle zones and strength mismatch. J Mater Process Technol 153:537–543.

    Article  Google Scholar 

  6. 6.

    Ge J, Lin J, Lei Y, Fu H (2018) Location-related thermal history, microstructure, and mechanical properties of arc additively manufactured 2Cr13 steel using cold metal transfer welding. Mater Sci Eng A 715:144–153.

    Article  Google Scholar 

  7. 7.

    Sirin K, Sirin SY, Kaluc E (2016) Influence of the interpass temperature on t8/5 and the mechanical properties of submerged arc welded pipe. J Mater Process Technol 238:152–159.

    Article  Google Scholar 

  8. 8.

    Shi Y, Han Z (2008) Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel. J Mater Process Technol 207:30–39.

    Article  Google Scholar 

  9. 9.

    Wang XL, Tsai YT, Yang JR, Wang ZQ, Li XC, Shang CJ, Misra RDK (2017) Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel. Weld World 61:1155–1168.

    Article  Google Scholar 

  10. 10.

    Jiang W, Yahiaoui K (2010) Influence of cooling rate on predicted weld residual stress buildup in a thick-walled piping intersection. J Press Vessel Technol 132(2):0212051–0212058.

    Article  Google Scholar 

  11. 11.

    Gouveia RR, Pukasiewicz AGM, Capra AR, Henke SL, Okimoto PC (2015) Effect of interpass temperature on microstructure, impact toughness and fatigue crack propagation in joints welded using the GTAW process on steel ASTM A743-CA6NM. Weld Int 29(6):433–440.

    Article  Google Scholar 

  12. 12.

    Lindgren LE (2001) Finite element modeling and simulation of welding. Part 1: increased complexity. J Therm Stress 24(2):141–192.

    Article  Google Scholar 

  13. 13.

    Restecka M, Jachym R (2016) IT systems used for welding process simulations and simulators of thermal-strain cycles. Biul Inst Spaw 60(4):23–29.

    Article  Google Scholar 

  14. 14.

    Slováček M, Vaněk M, Kik T (2015) Use of welding process numerical analyses as technical support in industry. Part 2: methodology and validation. Biul Inst Spaw 4:25–32.

    Article  Google Scholar 

  15. 15.

    Mac Ardghail P, Harrison N, Leen SB (2019) A process-structure-property model for welding of 9Cr power plant components: the influence of welding process temperatures on in-service cyclic plasticity response. Int J Press Vessel Pip 173:26–44.

    Article  Google Scholar 

  16. 16.

    Toyoda M, Mochizuki M (2004) Control of mechanical properties in structural steel welds by numerical simulation of coupling among temperature, microstructure, and macro-mechanics. Sci Technol Adv Mater 5(1–2):255–266.

    Article  Google Scholar 

  17. 17.

    Chen X, Chen X, Xu H, Madigan B (2015) Monte Carlo simulation and experimental measurements of grain growth in the heat affected zone of 304 stainless steel during multipass welding. Int J Adv Manuf Technol 80(5–8):1197–1211.

    Article  Google Scholar 

  18. 18.

    Wongpanya P, Boellinghaus T, Lothongkum G, Kannengiesser T (2008) Effects of preheating and interpass temperature on stresses in S 1100 QL multi-pass butt-welds. Weld World 52:79–92.

    Article  Google Scholar 

  19. 19.

    Novotný L, Abreu HFG, Miranda HC, Béreš M (2016) Simulations in multipass welds using low transformation temperature filler material. Sci Technol Weld Join 21(8):680–687.

    Article  Google Scholar 

  20. 20.

    Dai PJ, Moat H, Withers RJ (2011) Modelling the interpass temperature effect on residual stress in low transformation remperature stainless steel weld welds. Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference, Maryland (USA)

  21. 21.

    Zubairuddin M, Albert SK, Vasudevan M, Mahadevan S, Chaudhri V, Suri VK (2016) Thermomechanical analysis of preheat effect on grade P91 steel during GTA welding. Mater Manuf Process 31(3):366–371.

    Article  Google Scholar 

  22. 22.

    Lee SH, Na HS, Lee KW, Choe Y, Kang CY (2018) Microstructural characteristics and m23c6 precipitate behavior of the course-grained heat-affected zone of T23 steel without post-weld heat treatment. Metals 8(3):170.

    Article  Google Scholar 

  23. 23.

    Genchev G, Dreibati O, Ossenbrink R, Doynov N, Michailov V (2013) Physical and numerical simulation of the heat-affected zone of multi-pass welds. Mater Sci Forum 762:544–550.

    Article  Google Scholar 

  24. 24.

    Cui J, Zhu W, Chen Z, Chen L (2020) Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel. Sci Technol Weld Join 25(2):69–177.

    Article  Google Scholar 

  25. 25.

    Wang CC, Chang Y (1996) Effect of postweld treatment on the fatigue crack growth rate of electron-beam-welded AISI 4130 steel. Metall Mater Trans A 27(10):3162–3169.

    Article  Google Scholar 

  26. 26.

    Joshi JR, Potta M, Adepu K, Katta RK, Gankidi MR (2016) A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds. Def Technol 12(6):464–472.

    Article  Google Scholar 

  27. 27.

    Li L, Han T, Han B (2018) Embrittlement of intercritically reheated coarse grain heat-affected zone of ASTM 4130 steel. Metall Mater Trans 49(4):1254–1263.

    Article  Google Scholar 

  28. 28.

    Li LY, Wang Y, Han T, Li CW (2011) Embrittlement and toughening in CGHAZ of ASTM 4130 steel. Sci China Phys Mech Astron 54(8):1447–1454.

    Article  Google Scholar 

  29. 29.

    Rosenthal D (1941) Mathematical theory of heat distribution during welding and cutting. Weld. J. 20:220–234

    Google Scholar 

  30. 30.

    Goldak J, Bibby M, Moore J, House R, Patel B (1986) Computer modeling of heat flow in welds. Metall Trans B 17(3):587–600.

    Article  Google Scholar 

  31. 31.

    Myers PS, Uyehara OA, Borman GL (1976) Fundamentals of heat flow in welding. Weld Res Counc Bull 123:1–46

    Google Scholar 

  32. 32.

    Anca A, Cardona A, Risso J, Fachinotti VD (2011) Finite element modeling of welding processes. Appl Math Model 35(2):688–707.

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Pozo-Morejón JA, Souza LFG, Guerra T, Morales EV, Bott IS, Cruz-Crespo A, Pérez OR (2018) Ajuste de los calores de entrada que se corresponden con los tiempos de enfriamiento de la ZAT en soldadura GMAW sobre acero dúplex 2205 empleando la simulación por elementos finitos. Sold Insp 23(3):413–422.

    Article  Google Scholar 

  34. 34.

    Heinze C, Schwenk C, Rethmeier M (2011) Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion. Simul Model Pract Theory 19(9):1847–1859.

    Article  Google Scholar 

  35. 35.

    ISO - International Organization for Standardization (2013) Technical Specification - 18166

  36. 36.

    Geng H, Li J, Xiong J, Lin X (2017) Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci Technol Weld Join 22(6):472–483.

    Article  Google Scholar 

  37. 37.

    Goldak J, Chakravarti A (1984) A new finite element model for welding heat sources. Metall Trans B 15(B):299–305.

    Article  Google Scholar 

  38. 38.

    Azar AS, Ås SK, Akselsen OM (2012) Determination of welding heat source parameters from actual bead shape. Comput Mater Sci 54(1):176–182.

    Article  Google Scholar 

  39. 39.

    ASTM - American Society for Testing Materials (2013) Standard Test Methods for Determining Average Grain Size - ASTM E112

  40. 40.

    Hielscher R, Schaeben H (2008) A novel pole figure inversion method: specification of the MTEX algorithm. J Appl Crystallogr 41(6):1024–1037.

    Article  Google Scholar 

  41. 41.

    ASTM - American Society for Testing Materials (2017) Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials - ASTM E92

  42. 42.

    ASTM - American Society for Testing Materials (2012) Standard Test Methods and Definitions for Mechanical Testing of Steel Products - ASTM A370

  43. 43.

    Bate SK, Charles R, Warren A (2009) Finite element analysis of a single bead-on-plate specimen using Sysweld. Int J Press Vessel Pip 86(1):73–78.

    Article  Google Scholar 

  44. 44.

    AWS - American Welding Society (1994) Welding metallurgy, 4th edn

  45. 45.

    Honeycombe RWK, Pickering FB (1972) Ferrite and bainite in alloy steels. Metall Trans 3(5):1099–1112.

    Article  Google Scholar 

  46. 46.

    Mirak AR, Nili-Ahmadabadi M (2004) Effect of modified heat treatments on the microstructure and mechanical properties of a low alloy high strength steel. Mater Sci Technol 20(7):897–902.

    Article  Google Scholar 

  47. 47.

    Di Martino SF, Thewlis G (2014) Transformation characteristics of ferrite/carbide aggregate in continuously cooled, low carbon-manganese steels. Metall Mater Trans A 45(2):579–594.

    Article  Google Scholar 

  48. 48.

    Matsuda F, Fukada Y, Okada H, Shiga C, Ikeuchi K, Horii Y, Shiwaku T, Suzuki S (1996) Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan. Weld. World, Le Soudage Dans Le Monde 37(3):134–154

    Google Scholar 

  49. 49.

    TWI - The Welding Institute (1984) Metallography of welds in C-Mn steels, Cambridge

  50. 50.

    Bhole SD, Billingham J (1983) Effect of heat input on HAZ toughness in HSLA steels. Met Technol 10(1):363–367.

    Article  Google Scholar 

  51. 51.

    Race JM, Bhadeshia HKDH (1992) Precipitation sequences during carburisation of Cr–Mo steel. Mater Sci Technol 8(10):875–882.

    Article  Google Scholar 

  52. 52.

    Peddle BE, Pickles CA (2001) Carbide development in the heat affected zone of tempered and post-weld heat treated 2.25Cr-1Mo steel weldments. Can Metall Q 40(1):105–126.

    Article  Google Scholar 

  53. 53.

    Pilling J, Ridley N (1982) Tempering of 2.25 Pct Cr-1 Pct Mo low carbon steels. Metall Trans A 13(4):557–563.

    Article  Google Scholar 

  54. 54.

    Hu X, Li L, Wu X, Zhang M (2006) Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int J Fatigue 28(3):175–182.

    Article  Google Scholar 

  55. 55.

    Yang X, Di X, Liu X, Wang D, Li C (2019) Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels. Mater Charact 155:109818.

    Article  Google Scholar 

  56. 56.

    Shrestha SL, Breen AJ, Trimby P, Proust G, Ringer SP, Cairney JM (2014) An automated method of quantifying ferrite microstructures using electron backscatter diffraction (EBSD) data. Ultramicroscopy 137:40–47.

    Article  Google Scholar 

  57. 57.

    Wright SI, Nowell MM, Field DP (2011) A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17(3):316–329.

    Article  Google Scholar 

  58. 58.

    Saraf L (2011) Kernel average misorientation confidence index correlation from FIB sliced Ni-Fe-Cr alloy surface. Microsc Microanal 17:424–425.

    Article  Google Scholar 

  59. 59.

    Wayman CM (1994) The phenomenological theory of martensite crystallography: interrelationships. Metall Mater Trans A 25(9):1787–1795.

    Article  Google Scholar 

  60. 60.

    Furuhara T, Kawata H, Morito S, Maki T (2006) Crystallography of upper bainite in Fe-Ni-C alloys. Mater Sci Eng A 431(1–2):228–236.

    Article  Google Scholar 

  61. 61.

    Sodjit S, Uthaisangsuk V (2012) Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des 41:370–379.

    Article  Google Scholar 

  62. 62.

    Abdulstaar MA, Al-Fadhalah KJ, Wagner L (2017) Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints. Mater Charact 126:64–73.

    Article  Google Scholar 

  63. 63.

    Barmak K, Eggeling E, Emelianenko M, Epshteyn Y, Kinderlehrer D, Sharp R, Ta’asan S (2011) Critical events, entropy, and the grain boundary character distribution. Phys Rev B 83(13):1–12.

    Article  MATH  Google Scholar 

  64. 64.

    Kim CS, Rollett AD, Rohrer GS (2006) Grain boundary planes: new dimensions in the grain boundary character distribution. Scr Mater 54(6):1005–1009.

    Article  Google Scholar 

  65. 65.

    Bataev IA, Bataev AA, Burov VG, Lizunkova YS, Zakharevich EE (2008) Structure of widmanstätten crystals of ferrite and cementite. Steel Transl 38(8):684–687.

    Article  Google Scholar 

  66. 66.

    Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54(5):1279–1288.

    Article  Google Scholar 

  67. 67.

    Cui S, Shi Y, Cui Y, Zhu T (2018) The impact toughness of novel keyhole TIG welded duplex stainless steel joints. Eng Fail Anal 94:226–231.

    Article  Google Scholar 

  68. 68.

    Lipetzky P, Kreher W (1996) Grain boundary toughness effects on crack propagation in brittle polycrystals. Mater Sci Eng A 205(1–2):110–116.

    Article  Google Scholar 

  69. 69.

    Bhattacharjee D, Knott JF, Davis CL (2004) Charpy-impact-toughness prediction using an ‘effective’ grain size for thermomechanically controlled rolled microalloyed steels. Metall Mater Trans A 35(1):121–130.

    Article  Google Scholar 

  70. 70.

    Kim S, Lee S, Lee BS (2003) Effects of grain size on fracture toughness in transition temperature region of Mn-Mo-Ni low-alloy steels. Mater Sci Eng A 359(1–2):198–209.

    Article  Google Scholar 

  71. 71.

    Park YJ, Bernstein IM (1979) The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel. Metall Trans A 10(11):1653–1664.

    Article  Google Scholar 

  72. 72.

    Hwang B, Kim YG, Lee S, Kim YM, Kim NJ, Yoo JY (2005) Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels. Metall Mater Trans A 36(8):2107–2114.

    Article  Google Scholar 

  73. 73.

    Zhou T, Yu H, Wang S (2016) Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism. Mater Sci Eng A 658:150–158.

    Article  Google Scholar 

  74. 74.

    Scheid A, Félix LM, Martinazzi D, Renck T, Fortis Kwietniewski CE (2016) The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels. Mater Sci Eng A 661:96–104.

    Article  Google Scholar 

  75. 75.

    Liu K, Wang D, Deng C, Gong B, Wu S (2020) Improved microstructure heterogeneity and low-temperature fracture toughness of C–Mn weld metal through post weld heat treatment. Mater Sci Eng A 770:138541.

    Article  Google Scholar 

  76. 76.

    Liu F, Lin X, Shi J, Zhang Y, Bian P, Li X, Hu Y (2019) Effect of microstructure on the Charpy impact properties of directed energy deposition 300M steel. Addit Manuf 29:100795.

    Article  Google Scholar 

  77. 77.

    Byun JS, Shim JH, Suh JY, Oh YJ, Cho YW, Shim JD, Lee DN (2001) Inoculated acicular ferrite microstructure and mechanical properties. Mater Sci Eng A 319–321:326–331.

    Article  Google Scholar 

  78. 78.

    Keehan E, Zachrisson J, Karlsson L (2010) Influence of cooling rate on microstructure and properties of high strength steel weld metal. Sci Technol Weld Join 15(3):233–238.

    Article  Google Scholar 

Download references


The authors thank Vallourec Soluções Tubulares do Brasil S. A. for supplying the pipes and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Faperj) for scholarship.


This work was funded by Petróleo Brasileiro S. A. (Petrobras), and Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) (grant 2016/00335-0).

Author information




Formal analysis, P.H.G.D., F.W.C.F., V.H.P.M.O., and J.d.C.P.F.; funding acquisition, D.O.M., P.Z.J., and J.d.C.P.F.; investigation, P.H.G.D. and F.W.C.F.; methodology, P.H.G.D., V.H.P.M.O., and F.W.C.F.; project administration, D.O.M., P.Z.J., and J.d.C.P.F.; supervision, D.O.M., P.Z.J., and J.d.C.P.F.; original draft, P.H.G.D., V.H.P.M.O., and F.W.C.F.; writing-review and editing, P.H.G.D., F.W.C.F., V.H.P.M.O., D.O.M., P.Z.J., and J.d.C.P.F.

Corresponding author

Correspondence to Paulo Henrique Grossi Dornelas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dornelas, P.H.G., Farias, F.W.C., e Oliveira, V.H.P.M. et al. Influence of welding interpass temperature on Charpy V-notch impact energy of coarse-grain heat-affected zone of AISI 4130 steel pipe. Int J Adv Manuf Technol 108, 2197–2211 (2020).

Download citation


  • Coarse-grain heat-affected zone
  • Welding computational simulation
  • Welding physical simulation
  • Charpy V-notch impact energy
  • Electron backscatter diffraction