On the mechanism of dislocation-dominated chip formation in cutting-based single atomic layer removal of monocrystalline copper


For mechanical cutting, when cutting depth is decreased to the atomic scale, minimum chip thickness could be down to a single atomic layer. The material removal is conducted in a new dislocation-dominated chip formation mechanism. It is different from the extrusion-dominated nano-cutting and concentrated shearing-dominated chip formation in micromachining. Serials of molecular dynamics simulations indicate that there are three deformation zones generated within the contact zone between the cutting tool and workpiece materials, including a dislocation slip zone, a chip formation zone and an elastic deformation zone. Under their cooperation, the final material removal could be achieved with a single atomic layer precision. The processed surfaces with a single atomic layer precision can be achieved through this new chip formation mechanism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Bent W, Mahapatra S, Hoon R, Lee SHE, Fuhrer A, Reusch TCG, Thompson DL (2012) Ohm’s law survives to the atomic scale. Science 335(6064):64–67

    Article  Google Scholar 

  2. 2.

    Fuechsle M, Miwa JA, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg LC, Klimeck G, Simmons MY (2012) A single-atom transistor. Nat Nanotechnol 7(4):242

    Article  Google Scholar 

  3. 3.

    Fang FZ, Zhang N, Guo D, Ehmann K, Cheung B, Liu K, Yamamura K (2019) Towards atomic and close-to-atomic scale manufacturing. Int J Extrem Manuf 1(1):012001

    Article  Google Scholar 

  4. 4.

    Chen L, Wen J, Zhang P, Yu B, Chen C, Ma T, Lu X, Kim SH, Qian LM (2018) Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nat Commun 9(1):1542

    Article  Google Scholar 

  5. 5.

    Xie WK, Fang FZ (2019) Cutting-based single atomic layer removal mechanism of monocrystalline copper: atomic sizing effect. Nanomanuf Metrol 2(4):241–252

    Article  Google Scholar 

  6. 6.

    Xie WK, Fang FZ (2020) Mechanism of atomic and close-to-atomic scale cutting of monocrystalline copper. Appl Surf Sci 503:144239

    Article  Google Scholar 

  7. 7.

    Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275

    Article  Google Scholar 

  8. 8.

    Chen WQ, Zheng L, Teng X, Yang K, Huo D (2019) Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling. Int J Adv Manuf Technol 105(11):4539–4549

    Article  Google Scholar 

  9. 9.

    Woon KS, Rahman M (2010) Extrusion-like chip formation mechanism and its role in suppressing void nucleation. CIRP Ann 59(1):129–132

    Article  Google Scholar 

  10. 10.

    Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tool Manu 45(15):1681–1686

    Article  Google Scholar 

  11. 11.

    Komanduri R, Varghese S, Chandrasekaran N (2010) On the mechanism of material removal at the nanoscale by cutting. Wear 269(3-4):224–228

    Article  Google Scholar 

  12. 12.

    Fang FZ, Xu F (2018) Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanuf Metrol 1(1):4–31

    Article  Google Scholar 

  13. 13.

    Wang J, Fang FZ, Yan G, Guo Y (2019) Study on diamond cutting of ion implanted tungsten carbide with and without ultrasonic vibration. Nanomanuf Metrol 2:177–185

    Article  Google Scholar 

  14. 14.

    Liu K, Li XP, Rahman M, Neo KS, Liu XD (2007) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol 32(7-8):631

    Article  Google Scholar 

  15. 15.

    Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J, Yoshinaga H (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann 42(1):91–94

    Article  Google Scholar 

  16. 16.

    Shimada S, Ikawa N, Tanaka H, Uchikoshi J (1994) Structure of micromachined surface simulated by molecular dynamics analysis. CIRP Ann 43(1):51–54

    Article  Google Scholar 

  17. 17.

    Zhu P, Fang FZ (2016) Study of the minimum depth of material removal in nanoscale mechanical machining of single crystalline copper. Comput Mater Sci 118:192–202

    Article  Google Scholar 

  18. 18.

    Fang FZ, Zhang GX (2003) An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Technol 22(9-10):703–707

    Article  Google Scholar 

  19. 19.

    Patten JA, Gao W (2001) Extreme negative rake angle technique for single point diamond nano-cutting of silicon. Precis Eng 25(2):165–167

    Article  Google Scholar 

  20. 20.

    Günay M, Aslan E, Korkut I, Seker U (2004) Investigation of the effect of rake angle on main cutting force. Int J Mach Tool Manu 44(9):953–959

    Article  Google Scholar 

  21. 21.

    Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184(1-3):407–410

    Article  Google Scholar 

  22. 22.

    Komanduri R, Chandrasekaran N, Raff LM (1999) Orientation effects in nanometric cutting of single crystal materials: an MD simulation approach. CIRP Ann 48(1):67–72

    Article  Google Scholar 

  23. 23.

    Fang FZ, Zhang XD, Gao W, Guo YB, Byrne G, Hansen HN (2017) Nanomanufacturing—perspective and applications. CIRP Ann 66(2):683–705

    Article  Google Scholar 

  24. 24.

    Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A108(4):809–818

    Article  Google Scholar 

  25. 25.

    Schmucker SW, Kumar N, Abelson JR, Daly SR, Girolami GS, Bischof MR, Jaeger DL, Reidy RF, Gorman BP, Alexander J, Ballard JB (2012) Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography. Nat Commun 3:935

    Article  Google Scholar 

  26. 26.

    Fang FZ, Liu B, Xu Z (2015) Nanometric cutting in a scanning electron microscope. Precis Eng 41:145–152

    Article  Google Scholar 

  27. 27.

    Liu HT, Zhu XF, Sun YZ, Xie WK (2017) Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals. Appl Surf Sci 422:413–419

    Article  Google Scholar 

  28. 28.

    Sharma A, Datta D, Balasubramaniam R (2018) Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper. Comput Mater Sci 153:241–250

    Article  Google Scholar 

  29. 29.

    Valencia D, Wilson E, Jiang Z, Valencia-Zapata GA, Wang KC, Klimeck G, Povolotskyi M (2018) Grain-boundary resistance in copper interconnects: from an atomistic model to a neural network. Phys Rev Appl 9(4):044005

    Article  Google Scholar 

  30. 30.

    Zhang L, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis. Wear 211(1):44–53

    Article  Google Scholar 

  31. 31.

    Yan YD, Sun T, Dong S, Luo XC, Liang YC (2006) Molecular dynamics simulation of processing using AFM pin tool. Appl Surf Sci 252(20):7523–7531

    Article  Google Scholar 

  32. 32.

    Hosseini SV, Vahdati M (2012) Modelling the effect of tool edge radius on contact zone in nanomachining. Comput Mater Sci 65:29–36

    Article  Google Scholar 

Download references


This study was financially supported by the Science Foundation Ireland (SFI) (No. 15/RP/B3208) and ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014).

Author information



Corresponding author

Correspondence to Fengzhou Fang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Fang, F. On the mechanism of dislocation-dominated chip formation in cutting-based single atomic layer removal of monocrystalline copper. Int J Adv Manuf Technol 108, 1587–1599 (2020). https://doi.org/10.1007/s00170-020-05527-z

Download citation


  • ACSM
  • Mechanical cutting
  • Chip formation mechanism
  • Dislocation
  • Single atomic layer removal