Study of the manufacturing process effects of fused filament fabrication and injection molding on tensile properties of composite PLA-wood parts

Abstract

The present study evaluates the effects of manufacturing parameters on the tensile properties of a commercial composite material based upon polylactic acid (PLA) with wood fibers known as Timberfill. The specimens are built through fused filament fabrication (FFF), and the influence of four printing parameters (layer height, fill density, printing velocity, and orientation) is considered through a L27 Taguchi orthogonal array. Tensile tests are applied to obtain the response variable used as output results to perform the ANOVA calculations. Results show that fill density is the most influential parameter on the tensile strength, followed by building orientation and layer height, whereas the printing velocity shows no significant influence. The optimal set of parameters and levels is found, being 75% fill density, 0Z-axis orientation, 0.4 mm layer height, and 40 mm/s velocity as the best combination. Applying this combination, a 9.37-MPa maximum strength is the highest value obtained for the material. Additionally, five solid injection molded Timberfill specimens were tested as well and the results compared with the FFF samples. The values of the elastic modulus, elastic limit, and maximum strength of the injected samples were almost twofold of those were obtained for the FFF samples, but the maximum elongation of the injected specimens fell sharply.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

AM:

Additive manufacturing

FFF:

Fused filament fabrication

DOE:

Design of experiments

ANOVA:

Analysis of variance

References

  1. 1.

    Jerez-Mesa R, Travieso-Rodriguez JA, Llumà-Fuentes J, Gomez-Gras G, Puig D (2017) Fatigue lifespan study of PLA parts obtained by additive manufacturing. Procedia Manuf 13:872–879

    Article  Google Scholar 

  2. 2.

    Domingo-Espin M, Travieso-Rodriguez JA, Jerez-Mesa R, Lluma-Fuentes J (2018) Fatigue performance of ABS specimens obtained by fused filament fabrication. Materials. 11:2521

    Article  Google Scholar 

  3. 3.

    Fayazbakhsh K, Movahedi M, Kalman J (2019) The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication. Mater Today Commun 18:140–148

    Article  Google Scholar 

  4. 4.

    Morales-Planas S, Minguella-Canela J, Lluma-Fuentes J, Travieso-Rodriguez JA, García-Granada AA (2018) Multi jet fusion PA12 manufacturing parameters for watertightness, strength and tolerances. Materials. 11:1472

    Article  Google Scholar 

  5. 5.

    Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 1:107–122

    Article  Google Scholar 

  6. 6.

    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31:287–295

    Article  Google Scholar 

  7. 7.

    Fernandez-Vicente M, Calle W, Ferrandiz S, Conejero A (2006) Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print Addit Manuf 3:183–192

    Article  Google Scholar 

  8. 8.

    Laureto JJ, Pearce JM (2018) Anisotropic mechanical property variance between ASTM D638-14 type I and type IV fused filament fabricated specimens. Polym Test 68:294–301

    Article  Google Scholar 

  9. 9.

    Cwikla G, Grabowik C, Kalinowski K, Paprocka I, Ociepka P (2017) The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf Ser Mater Sci Eng 227(no. 1):012033

  10. 10.

    Marat-Mendes, Rosa M, Guedes M, Leite Baptista R (2018) Effect of fused filament fabrication processing parameters on the mechanical properties of PLA components. XVI PCF

  11. 11.

    El Magri A, El Mabrouk K, Vaudreuil S, Ebn Touhami M (2019) Mechanical properties of CF-Reinforced PLA Parts Manufactured by Fused Deposition Modeling. J Thermoplast Compos Mater:0892705719847244

  12. 12.

    Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246

    Article  Google Scholar 

  13. 13.

    Mazzanti V, Pariante R, Bonanno A, de Ballesteros OR, Mollica F, Filippone G (2019) Reinforcing mechanisms of natural fibers in green composites: role of fibers morphology in a PLA/hemp model system. Compos Sci Technol 180:51–59

    Article  Google Scholar 

  14. 14.

    Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452

    Article  Google Scholar 

  15. 15.

    Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  Google Scholar 

  16. 16.

    Huber T, Müssig J (2008) Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Compos Interfaces 15:335–349

    Article  Google Scholar 

  17. 17.

    Tisserat B, Liu Z, Finkenstadt V, Lewandowski B, Ott S, Reifschneider L (2015) 3D printing biocomposites. J Plast Res [Online early access] Feb 23

  18. 18.

    Zhao DX, Cai X, Shou GZ, Gu YQ, Wang PX (2016) Study on the preparation of bamboo plastic composite intend for additive manufacturing. Key Eng Mater 667:250–258

    Article  Google Scholar 

  19. 19.

    Daver F, Lee KP, Brandt M, Shanks R (2018) Cork–PLA composite filaments for fused deposition modelling. Compos Sci Technol 168:230–237

    Article  Google Scholar 

  20. 20.

    Tao Y, Wang H, Li Z, Li P, Shi S, Q. (2017) Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials. 10:339

    Article  Google Scholar 

  21. 21.

    Xie G, Zhang Y, Lin W (2017) Plasticizer combinations and performance of wood flour–poly (lactic acid) 3D printing filaments. BioResources. 12:6736–6748

    Google Scholar 

  22. 22.

    Gkartzou E, Koumoulos EP, Charitidis CA (2017) Production and 3D printing processing of bio-based thermoplastic filament. Manuf Rev 4:1

    Google Scholar 

  23. 23.

    Filgueira D, Holmen S, Melbø JK, Moldes D, Echtermeyer AT, Chinga-Carrasco G (2017) Enzymatic-assisted modification of thermomechanical pulp fibers to improve the interfacial adhesion with poly (lactic acid) for 3D printing. ACS Sustain Chem Eng 5:9338–9346

    Article  Google Scholar 

  24. 24.

    Stoof D, Pickering K, Zhang Y (2017) Fused deposition Modelling of natural fibre/polylactic acid composites. J Compos Sci 1:8

    Article  Google Scholar 

  25. 25.

    Kariz M, Sernek M, Obućina M, Kuzman MK (2017) Effect of wood content in FDM filament on properties of 3D printed parts. Mater Today Commun 14:135–140

    Article  Google Scholar 

  26. 26.

    Guo R, Ren Z, Bi H, Song Y, Xu M (2018) Effect of toughening agents on the properties of poplar wood flour/poly (lactic acid) composites fabricated with fused deposition modeling. Eur Polym J 107:34–45

    Article  Google Scholar 

  27. 27.

    Depuydt D, Balthazar M, Hendrickx K, Six W, Ferraris E, Desplentere F, Ivens J, Van Vuure AW (2019) Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym Compos 2019(40):1951–1963

    Article  Google Scholar 

  28. 28.

    Ozcelik B, Ozbay A, Demirbas E (2010) Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int Commun Heat Mass Transf 37:1359–1365

    Article  Google Scholar 

  29. 29.

    Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 90:453–458

    Article  Google Scholar 

  30. 30.

    Quintana R, Choi JW, Puebla K, Wicker R (2010) Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type I specimens. Int J Adv Manuf Technol 46:201–215

    Article  Google Scholar 

  31. 31.

    Galantucci LM, Lavecchia F, Percoco G (2010) Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann 59:247–250

    Article  Google Scholar 

  32. 32.

    Maidin S, Mohamed AS, Akmal S, Mohamed SB, Wong JHU (2018) Feasibility study of vacuum technology integrated fused deposition modeling to reduce staircase effect. J Fundam Appl Sci 10:633–645

    Google Scholar 

  33. 33.

    Lederle F, Meyer F, Brunotte GP, Kaldun C, Hübner EG (2016) Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen. Addit Manuf 1:3–7

    Article  Google Scholar 

  34. 34.

    Malinauskas M, Rekštytė S, Lukoševičius L, Butkus S, Balčiūnas E, Pečiukaitytė M, Baltriukienė D, Bukelskienė V, Butkevičius A, Kucevičius P, Rutkūnas V (2014) 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines. 5:839–858

    Article  Google Scholar 

  35. 35.

    Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers. 11:1094

    Article  Google Scholar 

  36. 36.

    Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53

    Article  Google Scholar 

  37. 37.

    Zandi MD, Jerez-Mesa R, Lluma-Fuentes J, Roa JJ, Travieso-Rodriguez JA (2020) Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF. Int J Adv Manuf Technol 10:1–4

    Google Scholar 

  38. 38.

    Endruweit A, Gommer F, Long A, C. (2013) Stochastic analysis of fibre volume fraction and permeability in fibre bundles with random filament arrangement. Compos A: Appl Sci Manuf 49:109–118

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramon Jerez-Mesa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zandi, M.D., Jerez-Mesa, R., Lluma-Fuentes, J. et al. Study of the manufacturing process effects of fused filament fabrication and injection molding on tensile properties of composite PLA-wood parts. Int J Adv Manuf Technol 108, 1725–1735 (2020). https://doi.org/10.1007/s00170-020-05522-4

Download citation

Keywords

  • Additive manufacturing
  • 3D printing
  • Fused filament fabrication
  • Composite
  • PLA
  • Young’s module
  • Tensile strength