Accuracy improvement of robotic machining based on robot’s structural properties

Abstract

Industrial robots are increasingly used as alternatives for specialized machine tools; however, the correct choice of a robot for a specific task or even programing the robot may present a problem if the robot’s structural properties and its accuracy throughout the workspace are unknown. In the article, an approach to improve the robot’s accuracy based on its structural properties is described. Manipulability, structural stiffness, structural inertia, damping ratios, and natural frequencies are chosen as the considered kinematic, static, and dynamic properties. Surrogate models to associate each property with the robot’s posture are established, and the relevant robot postures to machine a set of representative parts are derived. Analysis of the machined parts shows that machining accuracy depends on all considered property measures. By adjusting the robot’s posture, the machining accuracy for milling a hole was improved in diameter from 1.86 to 0.23 mm and in cylindricity from 0.87 to 0.16 mm. To evaluate robotic accuracy, a unique quality criterion is introduced and a predictive robotic machining accuracy model is established.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Matsuoka S-i, Shimizu K, Yamazaki N, Oki Y (1999) High-speed end milling of an articulated robot and its characteristics. J Mater Process Technol 95(1):83–89. https://doi.org/10.1016/S0924-0136(99)00315-5

    Article  Google Scholar 

  2. 2.

    Sabourin L, Robin V, Gogu G, Fauconnier JM (2012) Improving the capability of a redundant robotic cell for cast parts finishing. Ind Robot Int J 39(4):381–391. https://doi.org/10.1108/01439911211227962

    Article  Google Scholar 

  3. 3.

    Gao ZH, Lan XD, Bian YS (2011) Structural dimension optimization of robotic belt grinding system for grinding workpieces with complex shaped surfaces based on dexterity grinding space. Chin J Aeronaut 24(3):346–354. https://doi.org/10.1016/S1000-9361(11)60041-1

    Article  Google Scholar 

  4. 4.

    Diaz JRP, Kumar S, Kuss A, Schneider U, Drust M, Dietz T, Verl A (2016) Automatic programming and control for robotic deburring. In: Proceedings of 47th International Symposium on Robotics

  5. 5.

    Kuss A, Drust M, Verl A (2016) Detection of workpiece shape deviations for tool path adaptation in robotic deburring systems. In: 49th CIRP Conference on Manufacturing Systems (CIRP-CMS 2016). Elsevier B.V., pp 545-550. https://doi.org/10.1016/j.procir.2016.11.094

  6. 6.

    Guo YJ, Dong HY, Ke YL (2015) Stiffness-oriented posture optimization in robotic machining applications. Robot Comput Integr Manuf 35:69–76. https://doi.org/10.1016/j.rcim.2015.02.006

    Article  Google Scholar 

  7. 7.

    Wang G, Dong H, Guo Y, Ke Y (2017) Chatter mechanism and stability analysis of robotic boring. Int J Adv Manuf Technol 91(1-4):411–421. https://doi.org/10.1007/s00170-016-9731-9

    Article  Google Scholar 

  8. 8.

    Vosniakos GC, Matsas E (2010) Improving feasibility of robotic milling through robot placement optimisation. Robot Comput Integr Manuf 26(5):517–525. https://doi.org/10.1016/j.rcim.2010.04.001

    Article  Google Scholar 

  9. 9.

    Slavkovic NR, Milutinovic DS, Glavonjic MM (2013) A method for off-line compensation of cutting force-induced errors in robotic machining by tool path modification. Int J Adv Manuf Technol 70(9-12):2083–2096. https://doi.org/10.1007/s00170-013-5421-z

    Article  Google Scholar 

  10. 10.

    Cen L, Melkote SN (2017) CCT-based mode coupling chatter avoidance in robotic milling. J Manuf Process 29:50–61. https://doi.org/10.1016/j.jmapro.2017.06.010

    Article  Google Scholar 

  11. 11.

    Kruger J, Zhao HQ, de Ascencao GR, Jacobi P, Surdilovic D, Scholl S, Polley W (2016) Concept of an offline correction method based on historical data for milling operations using industrial robots. Prod Eng 10(4-5):409–420. https://doi.org/10.1007/s11740-016-0686-3

    Article  Google Scholar 

  12. 12.

    Marie S, Courteille E, Maurine P (2013) Elasto-geometrical modeling and calibration of robot manipulators: application to machining and forming applications. Mech Mach Theory 69:13–43. https://doi.org/10.1016/j.mechmachtheory.2013.05.003

    Article  Google Scholar 

  13. 13.

    Slamani M, Gauthier S, Chatelain JF (2015) A study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPs. Measurement 59:268–283. https://doi.org/10.1016/j.measurement.2014.09.052

    Article  Google Scholar 

  14. 14.

    Denkena B (2015) Enabling an industrial robot for metal cutting operations. In: Lepper T (ed) Procedia CIRP. pp 79-84. https://doi.org/10.1016/j.procir.2015.08.100

  15. 15.

    Schneider U, Olofsson B, Sornmo O, Drust M, Robertsson A, Hagele M, Johansson R (2014) Integrated approach to robotic machining with macro/micro-actuation. Robot Comput Integr Manuf 30(6):636–647. https://doi.org/10.1016/j.rcim.2014.04.001

    Article  Google Scholar 

  16. 16.

    Maurotto A, Tunc LT (2017) Effects of chattering on surface integrity in robotic milling of alloy 690. In: ASME 2017 Pressure Vessels and Piping Conference, 2017. https://doi.org/10.1115/PVP2017-65106

  17. 17.

    Barnfather JD, Goodfellow MJ, Abram T (2016) A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robot Comput Integr Manuf 37:49–56. https://doi.org/10.1016/j.rcim.2015.06.002

    Article  Google Scholar 

  18. 18.

    Furtado LFF, Villani E, Trabasso LG, Suterio R (2017) A method to improve the use of 6-dof robots as machine tools. Int J Adv Manuf Technol 92(5-8):2487–2502. https://doi.org/10.1007/s00170-017-0336-8

    Article  Google Scholar 

  19. 19.

    Kubela T, Pochyly A, Singule V (2016) Assessment of industrial robots accuracy in relation to accuracy improvement in machining processes. In: Power Electronics and Motion Control Conference (PEMC), 2016 IEEE International. IEEE, pp 720-725. https://doi.org/10.1109/EPEPEMC.2016.7752083

  20. 20.

    Cordes M, Hintze W (2017) Offline simulation of path deviation due to joint compliance and hysteresis for robot machining. Int J Adv Manuf Technol 90(1-4):1075–1083. https://doi.org/10.1007/s00170-016-9461-z

    Article  Google Scholar 

  21. 21.

    Wang G, Dong H, Guo Y, Ke Y (2015) Dynamic cutting force modeling and experimental study of industrial robotic boring. Int J Adv Manuf Technol:179–190. https://doi.org/10.1007/s00170-015-8166-z

  22. 22.

    Guo YJ, Dong HY, Wang GF, Ke YL (2016) Vibration analysis and suppression in robotic boring process. Int J Mach Tools Manuf 101:102–110. https://doi.org/10.1016/j.ijmachtools.2015.11.011

    Article  Google Scholar 

  23. 23.

    Bauer J, Friedmann M, Hemker T (2013) Analysis of industrial robot structure and milling process interaction for path manipulation. In: Process Machine Interactions. Springer, Berlin, Heidelberg, pp 245-263. https://doi.org/10.1007/978-3-642-32448-2

  24. 24.

    Kaldestad KB, Tyapin I, Hovland G (2015) Robotic face milling path correction and vibration reduction. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). https://doi.org/10.1109/AIM.2015.7222591

  25. 25.

    Wang JJ, Zhang H, Fuhlbrigge T (2009) Improving Machining Accuracy with Robot Deformation Compensation. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA. IEEE, pp 3826-3831. https://doi.org/10.1109/Iros.2009.5353988

  26. 26.

    Zaeh MF, Roesch O (2014) Improvement of the machining accuracy of milling robots. Prod Eng 8(6):737–744. https://doi.org/10.1007/s11740-014-0558-7

    Article  Google Scholar 

  27. 27.

    Schneider U, Momeni-K M, Ansaloni M, Verl A (2014) Stiffness modeling of industrial robots for deformation compensation in machining. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, ZDA. IEEE, pp 4464-4469. https://doi.org/10.1109/IROS.2014.6943194

  28. 28.

    Farzanehkaloorazi M, Bonev IA, Birglen L (2018) Simultaneous path placement and trajectory planning optimization for a redundant coordinated robotic workcell. Mech Mach Theory 130:346–362. https://doi.org/10.1016/j.mechmachtheory.2018.08.022

    Article  Google Scholar 

  29. 29.

    Xiong G, Ding Y, Zhu LM (2019) Stiffness-based pose optimization of an industrial robot for five-axis milling. Robot Comput Integr Manuf 55:19–28. https://doi.org/10.1016/j.rcim.2018.07.001

    Article  Google Scholar 

  30. 30.

    Pashkevich A, Chablat D, Wenger P (2008) Stiffness analysis of overconstrained parallel manipulators. Mech Mach Theory 44:966–982. https://doi.org/10.1016/j.mechmachtheory.2008.05.017

    Article  MATH  Google Scholar 

  31. 31.

    Ahmad A, Andersson K, Sellgren U, Khan S (2014) A stiffness modeling methodology for simulation-driven design of haptic devices. Eng Comput 30(1):125–141. https://doi.org/10.1007/s00366-012-0296-4

    Article  Google Scholar 

  32. 32.

    Dumas C, Caro S, Cherif M, Garnier S, Furet B (2012) Joint stiffness identification of industrial serial robots. Robotica 30:649–659. https://doi.org/10.1017/S0263574711000932

    Article  Google Scholar 

  33. 33.

    Klimchik A, Caro S, Furet B, Pashkevich A (2014) Complete stiffness model for a serial robot. In: 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO). https://doi.org/10.5220/0005098701920202

  34. 34.

    Tyapin I, Hovland G, Brogårdh T (2014) Method for estimating combined controller, joint and link stiffnesses of an industrial robot. In: 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings. https://doi.org/10.1109/ROSE.2014.6952974

  35. 35.

    Klimchik A, Furet B, Caro S, Pashkevich A (2015) Identification of the manipulator stiffness model parameters in industrial environment. Mech Mach Theory 90:1–22. https://doi.org/10.1016/j.mechmachtheory.2015.03.002

    Article  Google Scholar 

  36. 36.

    Yoshikawa T (1985) Dynamic manipulability of robot manipulators. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, 25-28. pp 1033-1038. https://doi.org/10.1109/ROBOT.1985.1087277

  37. 37.

    Asada H (1983) A geometrical representation of manipulator dynamics and its application to arm design. J Dyn Syst Meas Control 105:131–142. https://doi.org/10.1115/1.3140644

    Article  MATH  Google Scholar 

  38. 38.

    Cordes M, Hintze W, Altintas Y (2019) Chatter stability in robotic milling. Robot Comput Integr Manuf 55:11–18. https://doi.org/10.1016/j.rcim.2018.07.004

    Article  Google Scholar 

  39. 39.

    Mejri S, Gagnol V, Le T-P, Sabourin L, Ray P, Paultre P (2015) Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82(1-4):351–359. https://doi.org/10.1007/s00170-015-7336-3

    Article  Google Scholar 

  40. 40.

    Palmieri G, Martarelli M, Palpacelli MC, Carbonari L (2014) Configuration-dependent modal analysis of a Cartesian parallel kinematics manipulator: numerical modeling and experimental validation. Meccanica 49(4):961–972. https://doi.org/10.1007/s11012-013-9842-4

    Article  MATH  Google Scholar 

  41. 41.

    Cheng K (2008) Machining Dynamics: Theory, Applications and Practices. Springer, London. https://doi.org/10.1007/978-1-84628-368-0

    Google Scholar 

  42. 42.

    Mousavi S, Gagnol V, Bouzgarrou BC, Ray P (2018) Stability optimization in robotic milling through the control of functional redundancies. Robot Comput Integr Manuf 50:181–192. https://doi.org/10.1016/j.rcim.2017.09.004

    Article  Google Scholar 

  43. 43.

    Gao Z, Zhang D, Ge YJ (2010) Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches. Robot Comput Integr Manuf 26(2):180–189. https://doi.org/10.1016/j.rcim.2009.07.002

    Article  Google Scholar 

  44. 44.

    Modungwa D, Tlale N, Twala B (2013) Application of ensemble learning approach in function approximation for dimensional synthesis of a 6 DOF parallel manipulator. In: 2013 6th Robotics and Mechatronics Conference (RobMech), Durban, South Africa. IEEE, pp 26-33. https://doi.org/10.1109/RoboMech.2013.6685487

  45. 45.

    Friedrich J, Hinze C, Renner A, Verl A, Lechler A (2017) Estimation of stability lobe diagrams in milling with continuous learning algorithms. Robot Comput Integr Manuf 43:124–134. https://doi.org/10.1016/j.rcim.2015.10.003

    Article  Google Scholar 

  46. 46.

    Mohamed RP, Xi FF, Lin Y (2015) A combinatorial search method for the quasi-static payload capacity of serial modular reconfigurable robots. Mech Mach Theory 92:240–256. https://doi.org/10.1016/j.mechmachtheory.2015.05.016

    Article  Google Scholar 

  47. 47.

    Wu Y, Klimchik A, Caro S, Furet B, Pashkevich A (2015) Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robot Comput Integr Manuf 35:151–168. https://doi.org/10.1016/j.rcim.2015.03.007

    Article  Google Scholar 

  48. 48.

    Hassan M, Liu D, Paul G (2017) Collaboration of Multiple Autonomous Industrial Robots through Optimal Base Placements. J Intell Robot Syst 90(1-2):113–132. https://doi.org/10.1007/s10846-017-0647-x

    Article  Google Scholar 

  49. 49.

    Lim ZY, Ponnambalam SG, Izui K (2017) Multi-objective hybrid algorithms for layout optimization in multi-robot cellular manufacturing systems. Knowl-Based Syst 120:87–98. https://doi.org/10.1016/j.knosys.2016.12.026

    Article  Google Scholar 

  50. 50.

    Lin Y, Zhao H, Ding H (2017) Posture optimization methodology of 6R industrial robots for machining using performance evaluation indexes. Robot Comput Integr Manuf 48:59–72. https://doi.org/10.1016/j.rcim.2017.02.002

    Article  Google Scholar 

  51. 51.

    Yoshikawa T (1985) Manipulability of Robotic Mechanisms. Int J Robot Res 4(2):3–9. https://doi.org/10.1177/027836498500400201

    MathSciNet  Article  Google Scholar 

  52. 52.

    Gotlih J, Karner T, Gotlih K, Brezocnik M (2018) Experiment based structural stiffness calibration of a virtual robot model. In: DAAAM International Scientific Book 2018. DAAAM International Scientific Book. pp 131-140. https://doi.org/10.2507/daaam.scibook.2018.12

  53. 53.

    Klimchik A, Pashkevich A (2017) Serial vs. quasi-serial manipulators: comparison analysis of elasto-static behaviors. Mech Mach Theory 107:46–70. https://doi.org/10.1016/j.mechmachtheory.2016.09.019

    Article  Google Scholar 

  54. 54.

    Chen C, Peng FY, Yan R, Li YT, Wei DQ, Fan Z, Tang XW, Zhu ZR (2019) Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robot Comput Integr Manuf 55:29–40. https://doi.org/10.1016/j.rcim.2018.07.003

    Article  Google Scholar 

  55. 55.

    Swiatek G, Liu Z, Hazel B (2010) Dynamic simulation and configuration dependent modal identification of a portable flexible-link and flexible-joint robot. In: 28th seminar on machinery vibration

Download references

Funding

The authors would like to thank the Ministry of Higher Education, Science and Technology of Slovenia, for providing financial support that made this work possible.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gotlih Janez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 38 kb)

ESM 2

(XLSX 24 kb)

ESM 3

(XLSX 27 kb)

ESM 4

(XLSX 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janez, G., Timi, K., Karl, G. et al. Accuracy improvement of robotic machining based on robot’s structural properties. Int J Adv Manuf Technol 108, 1309–1329 (2020). https://doi.org/10.1007/s00170-020-05438-z

Download citation

Keywords

  • Robot
  • Machining
  • Accuracy
  • Experiment design
  • Genetic algorithm