Measurement point selection and compensation of geometric error of NC machine tools

Abstract

The selection of the measurement point is one of the key steps in modelling. The traditional closed-loop control method can enhance the machine tool precision to a certain extent; however, there are some limitations in this technique. This paper presents a method that simplifies modelling a geometric error by integrating the Abbe and Bryan principles. It is found that the modelling accuracy directly affects the machining accuracy, and that the manufacturing process and effect can be simulated using VERICUT. The machining simulation of a hemispherical workpiece provides a theoretical basis for error compensation. A compensation module is integrated into a CNC system, and the effectiveness of error compensation is verified by applying the double ball bar method. The measuring results before and after error compensation are compared, demonstrating that the errors are reduced and compensated successfully.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools-a review. Part I: geometric cutting-force induced and fixture dependent errors. Int J Mach Tools Manuf 40:1235–1256

    Article  Google Scholar 

  2. 2.

    Abe G, Aritoshi M, Tomita T, Shirase K (2011) Development of on-machine measurement system utilizing line laser displacement sensor. Int J Autom Technol 5(5):708–714

    Article  Google Scholar 

  3. 3.

    Ko TJ, Park JW, Kim HS, Kim SH (2007) On-machine measurement using a noncontact sensor based on a CAD model. Int J Adv Manuf Technol 32(7–8):739–746

    Article  Google Scholar 

  4. 4.

    Weikert S (2004) R-test, a new device for accuracy measurements on five-axis machine tools. CIRP Ann-Manuf Technol 53(1):429–432

    Article  Google Scholar 

  5. 5.

    Ibaraki S, Oyama C, Otsubo H (2011) Construction of an error map of rotary axes on a five-axis machining center by static R-test. Int J Mach Tools Manuf 51(3):190–200

    Article  Google Scholar 

  6. 6.

    Erkan T, Mayer JRR (2010) A cluster analysis applied to volumetric errors of five-axis machine tools obtained by probing an uncalibrated artefact. CIRP Ann-Manuf Technol 59(1):539–542

    Article  Google Scholar 

  7. 7.

    Ibaraki S, Iritani T, Matsushita T (2012) Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe. Int J Mach Tools Manuf 58(1):44–53

    Article  Google Scholar 

  8. 8.

    Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines-an update. CIRP Ann-Manuf Technol 57(2):660–675

    Article  Google Scholar 

  9. 9.

    Guo SJ, Jiang GD, Mei XS (2017) Investigation of sensitivity analysis and compensation parameter optimization of geometric error for five-axis machine tool. Int J Adv Manuf Technol 93:3229–3243

    Article  Google Scholar 

  10. 10.

    López De Lacalle LN, Lamikiz A, Ocerin O, Díez D, Maidagan E (2008) The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five-axis milling centres. Int J Adv Manuf Technol 37:122–139

    Article  Google Scholar 

  11. 11.

    Nojedeh MV, Habibi M, Arezoo B (2011) Tool path accuracy enhancement through geometrical error compensation. Int J Mach Tools Manuf 51:471–482

    Article  Google Scholar 

  12. 12.

    Mehrdad V, Behrooz A (2018) Accuracy improvement of volumetric error modeling in CNC machine tools. Int J Adv Manuf Technol 95:2243–2257

    Article  Google Scholar 

  13. 13.

    Lin W, Fu J, Chen Z, Xu Y (2009) Modeling of NC machine tool thermal error based on adaptive best-fitting WLS-SVM. J Mech Eng 45(3):178–182

    Article  Google Scholar 

  14. 14.

    Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng 33:194–201

    Article  Google Scholar 

  15. 15.

    Habibi M, Arezoo B, Vahebi NM (2011) Tool deflection and geometrical error compensation by tool path modification. Int J Mach Tools Manuf 51:471–482

    Article  Google Scholar 

  16. 16.

    Zhang J, Li B, Zhou CX, Zhao WH (2016) Positioning error prediction and compensation of ball screw feed drive system with different mounting conditions. Proc IMech E Part B: J Eng Manuf 230(12):2307–2311

    Article  Google Scholar 

  17. 17.

    Huang N, Jin Y, Bi Q, Wang Y (2015) Integrated post-processor for five-axis machine tools with geometric errors compensation. Int J Mach Tools Manuf 94:65–73

    Article  Google Scholar 

  18. 18.

    Soori M, Arezoo B, Habibi M (2013) Dimensional and geometrical errors of three-axis CNC milling machines in a virtual machining system. Comput Des 45:1306–1313

    Google Scholar 

  19. 19.

    Pezeshki M, Arezoo B (2016) Kinematic errors identification of three-axis machine tools based on machined work pieces. Precis Eng 43:493–504

    Article  Google Scholar 

  20. 20.

    Vahebi NM, Arezoo B (2016) Functional accuracy investigation of work-holding rotary axes in five-axis CNC machine tools. Int J Mach Tools Manuf 111:17–30

    Article  Google Scholar 

  21. 21.

    Li J, Xie FG, Liu XJ, Li WD, Zhu SW (2016) Geometric error identification and compensation of linear axes based on a novel 13-line method. Int J Adv Manuf Technol 87:2269–2283

    Article  Google Scholar 

  22. 22.

    Niels B, Jun Q, Dominiek R (2017) Design and experimental validation of an ultra-precision Abbe-compliant linear encoder-based position measurement system. Precis Eng 47:197–211

    Article  Google Scholar 

  23. 23.

    Kim DM, Lee DY, Gweon DG (2007) A new nano-accuracy AFM system for minimizing Abbe errors and the evaluation of its measuring uncertainty. Ultramicroscopy 107:322–328

    Article  Google Scholar 

  24. 24.

    Jin T, Ji HD, Hou WM, Le YF, Shen L (2017) Measurement of straightness without Abbe error using an enhanced differential plane mirror interferometer. Appl Opt 56(3):607–610

    Article  Google Scholar 

  25. 25.

    Liu HW, Xiang H, Chen JH, Yang R (2018) Measurement and compensation of machine tool geometry error based on Abbe principle. Int J Adv Manuf Technol 98:2769–2774

    Article  Google Scholar 

  26. 26.

    Liu Y, Kar ML, Nie HY, Woon ML, Yang J (2011) A new AFM nanotribology method using a T-shape cantilever with an off-axis tip for friction coefficient measurement with minimized Abbe error. Tribol Lett 41:313–318

    Article  Google Scholar 

  27. 27.

    Yuan DC, Tao X, Xie CJ, Zhao HY, Ren DX, Zhu XL (2018) Calibration and compensation of dynamic Abbe errors of a coordinate measuring machine. J Dyn Syst Meas Control 140:051001

    Article  Google Scholar 

  28. 28.

    Bryan JB, Carter DL (1979) Carter Design of an error-co-ordinate measuring machine. Precis Eng 1(3)

Download references

Funding

We acknowledge the financial support from the major projects of National Science and Technology in China for the research of high-end CNC machine tools and basic manufacturing equipment (Serial number of the project: 2017ZX04011010) and from the National Natural Science Fund (Grant No. 51675204).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua Xiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, R., Wang, P. et al. Measurement point selection and compensation of geometric error of NC machine tools. Int J Adv Manuf Technol 108, 3537–3546 (2020). https://doi.org/10.1007/s00170-020-05411-w

Download citation

Keywords

  • Abbe principle
  • Error compensation
  • Bryan principle
  • Machine tool accuracy
  • DBB method