Online measurement of the surface during laser forming


The laser forming process is characterized by high temperature gradients and localized deformation. The process uses a laser to introduce thermal strains. The localized deformation along with the high temperature gradients is introduced iteratively which creates a complex and dynamic forming process. To understand the dynamic behavior of the process, various models have been used. A limitation of these models is that verification is commonly based on comparison with the final shape. The present work is an attempt to measure the dynamic response during laser forming. This work will present a laser forming setup for measuring the dynamic response of a v-bend. A 2D laser range scanner was used for measuring a line perpendicular to the laser heating scan path. By scanning multiple samples and changing the relative position of the 2D laser range scanner along the laser heating scan path, a surface can be generated. Analysis of the surface shows that the plate undergoes different deformation profiles during forming—this can help in understanding the changes that incur during laser forming. A case study is performed where the experimental results are compared with a state-of-the-art numerical model with good correlation between results. This shows that the measured dynamic response can be used for improved verification of numerical models of laser forming to increase confidence in the numerical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Dahotre NB, Harimkar S (2008) Laser fabrication and machining of materials. Springer Science & Business Media.

  2. 2.

    Shi Y, Yao Z, Shen H, Hu J (2006) Int J Mach Tools Manuf 46 (12-13):1689.

    Article  Google Scholar 

  3. 3.

    Geiger M (1994) CIRP Annals 43(2):563.

    Article  Google Scholar 

  4. 4.

    Vollertsen F, Komel I, Kals R (1995) Model Simul Mater Sci Eng 3(1):107.

    Article  Google Scholar 

  5. 5.

    Shen H, Hu J, Yao Z (2010) Opt Lasers Eng 48(3):305.

    Article  Google Scholar 

  6. 6.

    Shi Y, Liu Y, Yi P, Hu J (2012) Opt Laser Technol 44(2):486.

    Article  Google Scholar 

  7. 7.

    Shen H, Vollertsen F (2009) Comput Mater Sci 46(4):834.

    Article  Google Scholar 

  8. 8.

    Kant R, Joshi SN (2016) J Manuf Process 23:135.

    Article  Google Scholar 

  9. 9.

    Maji K, Pratihar D, Nath A (2016) Int J Adv Manuf Technol 83(9-12):1441.

    Article  Google Scholar 

  10. 10.

    Shi Y, Lu X, Liu Y, Yi P (2013) Proceedings of the Institution of Mechanical Engineers, Part E:, Journal of Process Mechanical Engineering 227(3):225.

    Article  Google Scholar 

  11. 11.

    Genna S, Papa I, Leone C (2017) Int J Adv Manuf Technol 92(9-12):4111.

    Article  Google Scholar 

  12. 12.

    Hsieh HS, Lin J (2004) Int J Mach Tools Manuf 44(2-3):191.

    Article  Google Scholar 

  13. 13.

    Reeves M, Moore A, Hand D, Jones J, Cho J, Reed R, Edwardson S, Dearden G, French P, Watkins K (2003) Proceedings of the institution of mechanical engineers, Part B:, Journal of Engineering Manufacture 217(12):1685

    Article  Google Scholar 

  14. 14.

    Jezeršek M, Gruden V, Možina J (2004) Opt Express 12(20):4905.

    Article  Google Scholar 

  15. 15.

    Jezersek M, Diaci J, Mozina J (2006) Optical Micro-and Nanometrology in Microsystems Technology 6188:61881O.

    Article  Google Scholar 

  16. 16.

    Thomsen AN, Kristiansen M, Kristiansen E (2019) B. Endelt, Mendeley Data. V1.

  17. 17.

    Edwardson S, Griffiths J, Edwards K, Dearden G, Watkins K (2010) Proceedings of the Institution of Mechanical Engineers, Part C:, Journal of Mechanical Engineering Science 224 (5):1031.

    Article  Google Scholar 

  18. 18.

    Thomsen AN, Endelt B, Kristiansen M (2017) Phys Procedia 89:148.

    Article  Google Scholar 

  19. 19.

    Lambiase F, Di Ilio A, Paoletti A (2016) Int J Adv Manuf Technol 86(1-4):259.

    Article  Google Scholar 

  20. 20.

    Chen D, Wu S, Li M (2004) J Mater Process Technol 152(1):62.

    Article  Google Scholar 

  21. 21.

    Cheng P, Yao YL, Liu C, Pratt D, Fan Y (2005) J Manuf process 7(1):28.

    Article  Google Scholar 

  22. 22.

    Zhang L, Reutzel E, Michaleris P (2004) Int J Mech Sci 46(4):623.

    Article  Google Scholar 

  23. 23.

    Shen H, Yao Z, Shi Y, Hu J (2007) International Journal of Modelling, Identification and Control. 2.

  24. 24.


  25. 25.

    Deng D, Murakawa H (2006) Comput Mater Sci 37(3):269.

    Article  Google Scholar 

  26. 26.

    Towfighi S, Romilly D, Olson J (2013) Mater High Temp 30:151.

    Article  Google Scholar 

Download references


Financial support for this project by the Manufacturing Academy Denmark (MADE) under work package 3 and Innovation Fund Denmark INTERLASE project number 7050-00024B is gratefully acknowledged. The experimental equipment used for this project was supported by the Poul Due Jensen Foundation. Support for the SICK Sopas interface was provided by Radoslav Darula from Aalborg University.

Author information



Corresponding author

Correspondence to A. N. Thomsen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 22.1 MB)

(AVI 21.0 MB)

(AVI 7.93 MB)

(AVI 22.2 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomsen, A.N., Kristiansen, M., Kristiansen, E. et al. Online measurement of the surface during laser forming. Int J Adv Manuf Technol 107, 1569–1579 (2020).

Download citation


  • Laser forming
  • Online measurements
  • Bending angle
  • AISI 304
  • FEM