Effects of process parameters on forming force and accuracy in cold roll-beating forming external tooth groove

  • Long Li
  • Yan LiEmail author
  • Mingshun Yang
  • Xudong Xiao
  • Limu Cui
  • Fengkui Cui


Cold roll-beating forming is an incremental cumulative plastic forming technology that uses rolling wheels to impact and roll a metal target at room temperature. The process parameters of cold roll-beating forming influence the forming process and its accuracy. In this paper, these influences are studied for the case of cold roll-beating forming an external tooth groove. First, the process and characteristics of cold roll-beating forming are analyzed to determine the key process parameters for forming external tooth grooves. Next, forming experiments and finite element simulations are carried out for roll-beating AISI 1045 (DIN C45). The forces, material deformation, and formed surface characteristics are analyzed for the process of cold roll-beating forming of an external tooth groove. Finally, the effects of the roll-beating method, spindle speed, and roll-beating density on the forces, forming defect, angle of the groove profile, and surface roughness are discussed. This study will serve as a reference for reducing forming force, restraining adverse deformation, and controlling forming quality by optimizing process parameters.


Cold roll-beating Forming Tooth groove Force·accuracy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

The authors are grateful to National Natural Science Foundation of China (Grant No. 51475366, 51475146), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM5074), and Ph.D. Innovation fund projects of Xi’an University of Technology (Grant No. 310-252071601).


  1. 1.
    Gröbel D, Schulte R, Hildenbrand P, Lechner M, Engel U, Sieczkarek P, Wernicke S, Gies S, Tekkaya AE, Behrens BA, Hübner S, Vucetic M, Koch S, Merklein M (2016) Manufacturing of functional elements by sheet-bulk metal forming processes. Prod Eng 10(1):63–80. CrossRefGoogle Scholar
  2. 2.
    Bauer S (2012) Sustainable materials: with both eyes open. Mater Today 15(9):410. CrossRefGoogle Scholar
  3. 3.
    Tekkaya AE, Allwood JM, Bariani PF, Bruschi S, Cao J, Gramlich S, Groche P, Hirt G, Ishikawa T, Löbbe C, Lueg-Althoff J, Merklein M, Misiolek WZ, Pietrzyk M, Shivpuri R, Yanagimoto J (2015) Metal forming beyond shaping: predicting and setting product properties. CIRP Ann Manuf Technol 64(2):629–653. CrossRefGoogle Scholar
  4. 4.
    Wang Z (2013) Theory and approach to the less-loading closed die forging. J Mech Eng 49(18):92–98. CrossRefGoogle Scholar
  5. 5.
    Yang H, Fan XG, Sun ZC, Guo LG, Zhan M (2013) Some advances in local loading precision forming of large scale integral complex components of titanium alloys. Mater Res Innov 15(sup1):s493–s496. CrossRefGoogle Scholar
  6. 6.
    Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. CIRP Ann Manuf Technol 61(2):725–745. CrossRefGoogle Scholar
  7. 7.
    Groche P, Fritsche D (2006) Application and modelling of flow forming manufacturing processes for internally geared wheels. Int J Mach Tools Manuf 46(11):1261–1265. CrossRefGoogle Scholar
  8. 8.
    Wong CC, Danno A, Tong KK, Yong MS (2008) Cold rotary forming of thin-wall component from flat-disc blank. J Mater Process Technol 208(1–3):53–62. CrossRefGoogle Scholar
  9. 9.
    Sheu JJ, Yu CH (2007) The cold orbital forging die and process design of a hollow-ring gear part. The 35th International MATADOR Conference, 2007. Springer-Verlag, London, pp 111–114.
  10. 10.
    Manfred H, Hubert N, Peter K, Oskar M, Albin G, Hans-Ruedi H (1999) Procedure for manufacture of gearwheel teeth. DE19744639Google Scholar
  11. 11.
    Krapfenbauer H (1984) New aspects for the mass production of spur gears by cold rolling. IPE 8(3):39–4lGoogle Scholar
  12. 12.
    Cui FK, Wang XQ, Zhang FS, Xu HY, Quan JH, Li Y (2013) Metal flowing of in volute spline cold roll-beating forming. Chin J Mech Eng-En 26(5):1056–1062.
  13. 13.
    Cui FK, Liu F, Su YX, Ruan XL, Xu SK, Liu LB (2018) Surface performance multiobjective decision of a cold roll-beating spline with the entropy weight ideal point method. Math Probl Eng 2018:1–7. Google Scholar
  14. 14.
    Grob E, Krapfenbauer H (1973) Roller head for cold rolling of splined shafts or gears US3818735Google Scholar
  15. 15.
    Cui FK, He XJ, Li Y, Han ZR (2010) Process parameters optimization of ballscrew manufactured by cold rolling. Appl Mech Mater 33:268–272. CrossRefGoogle Scholar
  16. 16.
    Li YX, Li Y, Yuan QL (2014) Research on simulation of rack roll-beating forming based on ABAQUS. J Chem Pharm Res 6(3):798–805MathSciNetGoogle Scholar
  17. 17.
    Liang XM, Li Y, Cui LM, Yang MS, Xiao JM, Cui FK (2016) The effect of different roll-beating methods on deformation forces of rack cold roll-beating. Rev Fac Lng 31(8):164–174.
  18. 18.
    Cui FK, He XJ, Li CM, Li Y, Han ZR (2010) Shaping movement analysis and simulation of ballscrew manufactured by cold rolling. Adv Mater Res 97-101:4032–4035. CrossRefGoogle Scholar
  19. 19.
    Yang MS, Li Y, Dong H, Li YX (2015) Scale-like texture defect of slab metal cold roll-beating. Mater Res Innov 19(sup5):911–915. Google Scholar
  20. 20.
    Ding ZH, Cui FK, Liu YB, Li Y, Xie KG (2017) A model of surface residual stress distribution of cold rolling spline. Math Probl Eng 2017:1–21. Google Scholar
  21. 21.
    Li Y, Li YX, Yang MS, Yuan QL, Cui FK (2015) Analyzing the thermal mechanical coupling of 40Cr cold roll-beating forming process based on the Johnson-cook dynamic constitutive equation. Heat and Technology 33(3):51–58.
  22. 22.
    Kopp R, Wiegels H (1999) Einführung in die Umformtechnik. Verlag Mainz, AachenGoogle Scholar
  23. 23.
    Groche P, Kramer P (2017) Numerical investigation of the influence of frictional conditions in thread rolling operations with flat dies. Int J Mater Form 11(5):687–703. CrossRefGoogle Scholar
  24. 24.
    Zhang DW, Cui MC, Cao M, Ben NY, Zhao SD (2017) Determination of friction conditions in cold-rolling process of shaft part by using incremental ring compression test. Int J Adv Manuf Technol 91(9–12):3823–3831. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Long Li
    • 1
  • Yan Li
    • 1
    Email author
  • Mingshun Yang
    • 1
  • Xudong Xiao
    • 1
  • Limu Cui
    • 1
  • Fengkui Cui
    • 2
  1. 1.School of Mechanical and Precision Instrument EngineeringXi’an University of TechnologyXi’anChina
  2. 2.School of Mechatronics EngineeringHenan University of Science and TechnologyLuoyangChina

Personalised recommendations