Advertisement

The selection of temperature-sensitivity points based on K-harmonic means clustering and thermal positioning error modeling of machine tools

  • Yang Li
  • Ji Zhao
  • Shijun Ji
  • Fusheng LiangEmail author
ORIGINAL ARTICLE
  • 64 Downloads

Abstract

In the thermal error compensation technology of CNC machine tools, the core is to establish a mathematical model of thermal error with high predictive accuracy and strong robustness. The prerequisite for the error model is to select the optimum temperature-sensitivity points, which can inhibit the multi-collinearity problem among temperature points and improve the predictive accuracy and robustness of the error model. In this paper, K-harmonic means (KHM) clustering is introduced for the first time to select the temperature-sensitivity points in the field of error modeling. In statistical numerical experiments, it is verified that KHM clustering is very stable and requires relatively small number of iterations to converge comparing with the common clustering methods such as K-means (KM) clustering and fuzzy C-means clustering (FCM). Then, the effect of KHM clustering on the selection of temperature-sensitivity points is validated in the actual experiments. Multiple linear regression model combined with KHM clustering (MLR-KHM) is adopted to construct the thermal error model of positioning error. The experimental results demonstrate that the predictive accuracy and robustness of MLR-KHM error model can conform with the requirements of the error compensation.

Keywords

CNC machine tools Thermal error Temperature-sensitivity point selection K-harmonic means clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work is supported by the National Key Basic Research and Development Program (973 Program) of China (grant no. 2011CB706702), Natural Science Foundation of China (grant no. 51135006 and 51305161), Jilin province science and technology development plan item (grant no. 20130101042JC), and Project 2017140 supported by Graduate Innovation Fund of Jilin University (grant no. 2017140).

Supplementary material

170_2018_2793_MOESM1_ESM.xlsx (41 kb)
ESM 1 (XLSX 41 kb)
170_2018_2793_MOESM2_ESM.xlsx (15 kb)
ESM 2 (XLSX 14 kb)
170_2018_2793_MOESM3_ESM.xlsx (25 kb)
ESM 3 (XLSX 25 kb)

References

  1. 1.
    Bryan JB (1990) International status of thermal error research. CIRP Ann-Manuf Technol 39(2):645–656CrossRefGoogle Scholar
  2. 2.
    Ni J (1997) CNC machine accuracy enhancement through real-time error compensation. J Manuf Sci Eng Trans ASME 119:717–725CrossRefGoogle Scholar
  3. 3.
    Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38CrossRefGoogle Scholar
  4. 4.
    Mian NS, Fletcher S, Longstaff AP, Myers A (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng 37:372–379CrossRefGoogle Scholar
  5. 5.
    Yang J, Zhang DS, Mei XS, Zhao L, Ma C, Shi H (2014) Thermal error simulation and compensation in a jig-boring machine equipped with a dual-drive servo feed system. Proc IMechE, Part B: J Eng Manuf 229(1 Suppl):43–63Google Scholar
  6. 6.
    Ma C, Mei XS, Yang J, Zhao L, Shi H (2015) Thermal characteristics analysis and experimental study on the high-speed spindle system. Int J Adv Manuf Technol 79(1–4):469–489CrossRefGoogle Scholar
  7. 7.
    Fan KG (2016) Research on the machine tool’s temperature spectrum and its application in a gear form grinding machine. Int J Adv Manuf Technol 90(9–12):3841–3850Google Scholar
  8. 8.
    Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50:667–675CrossRefGoogle Scholar
  9. 9.
    Yan JY, Yang JG (2008) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132Google Scholar
  10. 10.
    Han J, Wang LP, Wang HT, Cheng NB (2011) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1–4):205–212Google Scholar
  11. 11.
    Wang HT, Wang LP, Li TM, Han J (2013) Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method. Int J Adv Manuf Technol 69(1–4):121–126CrossRefGoogle Scholar
  12. 12.
    Chen JS, Yuan J, Ni J (1996) Thermal error modeling for real-time error compensation. Int J Adv Manuf Technol 12(4):266–275CrossRefGoogle Scholar
  13. 13.
    Wu CW, Tang CH, Chang CF, Shiao YS (2011) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5–8):681–689Google Scholar
  14. 14.
    Ramesh R, Mannan MA, Poo AN (2002) Support vector machines model for classification of thermal error in machine tools. Int J Adv Manuf Technol 20(2):114–120CrossRefGoogle Scholar
  15. 15.
    Miao EM, Gong YY, Niu PC, Ji CZ, Chen HD (2013) Robustness of thermal error compensation modeling models of CNC machine tools. Int J Adv Manuf Technol 69(9–12):2593–2603CrossRefGoogle Scholar
  16. 16.
    Yang J, Zhang DS, Feng B, Mei XS, Hu ZB (2014) Thermal-induced errors prediction and compensation for a coordinate boring machine based on time series analysis. Math Probl Eng 2014:1–13.  https://doi.org/10.1155/2014/784218 Google Scholar
  17. 17.
    Dai H, Wang S, Xiong X (2017) Thermal error modelling of motorised spindle in large-sized gear grinding machine. Proc IMechE, Part B: J Eng Manuf 231(5):768–778CrossRefGoogle Scholar
  18. 18.
    Zhang T, Ye WH, Shan YC (2016) Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool. Int J Adv Manuf Technol 85(9):1–11Google Scholar
  19. 19.
    Lei MH, Jiang GD, Yang J, Mei XS, Xia P, Zhao L (2017) Thermal error modeling with dirty and small training sample for the motorized spindle of a precision boring machine. Int J Adv Manuf Technol 2017(2):1–16Google Scholar
  20. 20.
    Güngör Z, Ünler A (2008) K-harmonic means data clustering with tabu-search method. Appl Math Model 32(6):1115–1125CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang B, Hsu M, Dayal U (1999) K-Harmonic Means- A Data Clustering AlgorithmGoogle Scholar
  22. 22.
    Hamerly G, Elkan C (2002) Alternatives to the k-means algorithm that find better clusterings. Eleventh International Conference on Information and Knowledge Management. ACM 2002:600–607Google Scholar
  23. 23.
    Wu CJ, Fan JW, Wang QH, Pan R, Tang YH, Li ZS (2017) Prediction and compensation of geometric error for translational axes in multi-axis machine tools. Int J Adv Manuf Tech 9–12:1–23Google Scholar
  24. 24.
    Fu GQ, Zhang L, Fu JZ, Gao HL, Jin YA (2017) F test-based automatic modeling of single geometric error component for error compensation of five-axis machine tools. Int J Adv Manuf Tech 2:1–13CrossRefGoogle Scholar
  25. 25.
    Li ZH, Fan KG, Yang JG, Zhang Y (2014) Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. Int J Adv Manuf Technol 73(5–8):773–782CrossRefGoogle Scholar
  26. 26.
    Jiang H, Fan KG, Yang JG (2014) An improved method for thermally induced positioning errors measurement, modeling, and compensation. Int J Adv Manuf Technol 75(9–12):1279–1289CrossRefGoogle Scholar
  27. 27.
    Li ZH, Yang JG, Fan KG, Zhang Y (2015) Integrated geometric and thermal error modeling and compensation for vertical machining centers. Int J Adv Manuf Tech 76(5):1139–1150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations