Laser line triangulation for fast 3D measurements on large gears

  • Matthias Marcus AuerswaldEmail author
  • Axel von Freyberg
  • Andreas Fischer


The causes of geometrical deviations from the production process and the prediction of application properties, such as noise behavior, wear, or material fatigue, are only possible by having detailed information about the gear geometry. The gold standard for the gear quality inspection is represented by dimensional measurements with a tactile sensor system. As a result for industrial applications, the slow serial measurement leads to the compromise of a random inspection of the gear geometry. For the purpose of a faster and more extensive surface acquisition, a laser line triangulation sensor is investigated providing 1280 points at a line width of 25 mm with up to 200 lines/s. The results at the tooth of a large cylindrical involute gear with a pitch circle diameter of 922 mm and a face width of 246 mm show the qualification for fast three-dimensional measurements of the convex and reflective surface. The detection of the complete profile line at once is possible. It is shown that the measurement deviation of laser line triangulation can be minimized by increasing the dynamic threshold. The measurement deviations amount to ± 8.2 μm and can be attributed to random and systematic errors. Compared to the standard gear inspection, an acceleration factor of 5700 was attained. An optical scanning of the complete tooth flank provides the prerequisite for an identification of surface defects in the form of breakouts and blemish.


Large gear Laser line triangulation Geometric deviations Quality inspection Surface defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WindGuard (2016) Number of wind turbines in GermanyGoogle Scholar
  2. 2.
    Bauer E, Wikidal F, Gellermann T (2005) Überblick über Schäden am mechanischen Strang von Windernergieanlagen. In: Antriebstechnisches Kolloquium (ATK 2005), Aachen, pp 1–20Google Scholar
  3. 3.
    Goch G (2003) Gear metrology. CIRP Ann Manuf Technol 52(2):659–695. CrossRefGoogle Scholar
  4. 4.
    Goch G, Knapp W, Härtig F (2012) Precision engineering for wind energy systems. CIRP Ann Manuf Technol 61(2):611–634. CrossRefGoogle Scholar
  5. 5.
    Härtig F, Rost K, Goch G (2010) Large gear material standard for the traceability of gears for transmission manufacturing. In: 4th International Conference on Gears, Garching, VDI-Berichte 2108:991–1004Google Scholar
  6. 6.
    ISO1328-1 (1995) Cylindrical gears - ISO system of accuracy - Part 1 Definitions and allowable values of deviations relevant to corresponding flanks of gear teethGoogle Scholar
  7. 7.
    Lu G, Wu S, Palmer N, Liu H (1998) Application of phase-shift optical triangulation to precision gear gauging. In: SPIE Proceedings Volume 3520:52–63.
  8. 8.
    VDI/VDE 2607 (2000) Computer aided evaluation of profile and helix measurements on cylindrical gears with involute profileGoogle Scholar
  9. 9.
    Härtig F, Lin H, Kniel K, Shi Z (2012) Standard conforming involute gear metrology using an articulated arm coordinate measuring system. Meas Sci Technol 23:105011. CrossRefGoogle Scholar
  10. 10.
    Franceschini F, Galetto M, Maisano D, Mastrogiacomo L (2016) Combining multiple large volume metrology systems: competitive versus cooperative data fusion. Precis Eng 43:514–524. CrossRefGoogle Scholar
  11. 11.
    Schmitt RH, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, Goch G, Hughes B, Forbes A, Estler WT (2016) Advances in large-scale metrology – review and future trends. CIRP Ann Manuf Technol 65(2):643–665. CrossRefGoogle Scholar
  12. 12.
    Petz M, Tutsch R, Christoph R, Andraes M, Hopp B (2012) Tactile–optical probes for three-dimensional microparts. Measurement 45:2288–2298. CrossRefGoogle Scholar
  13. 13.
    Gadelmawla ES (2011) Computer vision algorithms for measurement and inspection of spur gears. Measurement 44:1669–1678. CrossRefGoogle Scholar
  14. 14.
    Balzer F, Schäfer M, Lindner I, Günther A, Stöbener D, Westerkamp J (2015) Recent advances in optical gear measurements - a new approach for fast measurements of large gears. In: 6th International Conference on Gears, Garching, VDI-Berichte 2255:655–666Google Scholar
  15. 15.
    Meeß K, Kästner M, Seewig J (2006) Reduction and evaluation of the uncertainty of measurement of optical gear measurement using fringe projection. tm – Technisches Messen 73(11):603–610. Google Scholar
  16. 16.
    Fang S-P, Wang L-J, Komori M, Kubo A (2011) Design of laser interferometric system for measurement of gear tooth flank. Optik 122:1301–1304. CrossRefGoogle Scholar
  17. 17.
    Yang HZ, Qiao XG, Luo D, Lim KS, Chong W, Harun SW (2014) A review of recent developed and applications of plastic fiber optic displacement sensors. Measurement 48:333–345. CrossRefGoogle Scholar
  18. 18.
    Lyda W, Gronle M, Fleischle D, Mauch F, Osten W (2012) Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy. Meas Sci Technol 23:054009. CrossRefGoogle Scholar
  19. 19.
    Trocha P, Karpov M, Ganin D, Pfeiffer MH, Kordts A, Wolf S, Krockenberger J, Marin-Palomo P, Weimann C, Randel S (2018) Ultrafast optical ranging using microresonator soliton frequency combs. Science 359:887–891. CrossRefGoogle Scholar
  20. 20.
    Katsuhiro Miura TT, Nose A, Takeda R, Ueda S (2018) Accuracy verification of gear measurement with a point autofocus probe. In: euspen’s 18th International Conference and Exhibition, pp 121–122Google Scholar
  21. 21.
    Wu S, Lu G (1998) Non-contact, high-speed, precision gear inspection. In: AHS International Annual Forum, Washington (DC), pp 701–711Google Scholar
  22. 22.
    Younes MA, Khalil AM, Damir MN (2005) Automatic measurement of spur gear dimensions using laser light, part 2: measurement of flank profile. Opt Eng 44:103603. CrossRefGoogle Scholar
  23. 23.
    Chow J, Xu SLT, Kengkool K (2002) Development of an integrated laser-based reverse engineering and machining system. Int J Adv Manuf Technol 19(3):186–191CrossRefGoogle Scholar
  24. 24.
    Zhang S (2010) Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Opt Lasers Eng 48:149–158. CrossRefGoogle Scholar
  25. 25.
    Xiao Y-L, Su X, Chen W, Liu Y (2012) Three-dimensional shape measurement of aspheric mirrors with fringe reflection photogrammetry. Appl Opt 51:457–464. CrossRefGoogle Scholar
  26. 26.
    Peggs GN, Muralikrishnan B, Ziebart M, Robson S, Forbes AB, Hughes EB, Maropoulos PG (2009) Recent developments in large-scale dimensional metrology. Proc Inst Mech Eng B J Eng Manuf 223:571–595CrossRefGoogle Scholar
  27. 27.
    Baribeau R, Rioux M (1991) Influence of speckle on laser range finders. Appl Opt 30:2873–2878.
  28. 28.
    Dorsch RG, Häusler G, Herrmann JM (1994) Laser triangulation: fundamental uncertainty in distance measurement. Appl Opt 33:1306–1314. CrossRefGoogle Scholar
  29. 29.
    Günther A, Peters J, Goch G (2001) Areal numerical description, alignment and evaluation of cylindrical gears. tm – Technisches Messen 68(4):160–165.
  30. 30.
    Stöbener D, von Freyberg A, Fuhrmann M, Goch G (2012) Areal parameters for the characterisation of gear distortions. Materialwissenschaft und Werkstofftechnik 43(1–2):120–124. CrossRefGoogle Scholar
  31. 31.
    Stöbener D, von Freyberg A, Fuhrmann M, Goch G (2011) Characterisation of gear distortions with areal parameters. In: Zoch HW, Lübben T (eds) 3rd International Conference on Distortion Engineering, pp 147–154Google Scholar
  32. 32.
    Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21.
  33. 33.
    Lonardo PM, Lucca DA, De Chiffre L (2002) Emerging trends in surface metrology. CIRP Ann Manuf Technol 51(2):701–723. CrossRefGoogle Scholar
  34. 34.
    Weckenmann A, Estler T, Peggs G, McMurtry D (2004) Probing systems in dimensional metrology. CIRP Ann Manuf Technol 53(2):657–684. CrossRefGoogle Scholar
  35. 35.
    Feng H-Y, Liu Y, Xi F (2001) Analysis of digitizing errors of a laser scanning system. Precis Eng 25:185–191. CrossRefGoogle Scholar
  36. 36.
    Van Gestel N, Cuypers S, Bleys P, Kruth J-P (2009) A performance evaluation test for laser line scanners on CMMs. Opt Lasers Eng 47:336–342. CrossRefGoogle Scholar
  37. 37.
    Gonzalez RC, Woods RE (2018) Digital image processing. 4th ed. Pearson, New Jersey, pp 804–825Google Scholar
  38. 38.
    Jähne B (2005) Digital image processing, 6th ed. Springer, pp 449–462Google Scholar
  39. 39.
    Kang S-D, Yoo H-W, Jang D-S (2007) Color image segmentation based on the normal distribution and the dynamic thresholding. In: Computational science and its applications – ICCSA, Kuala Lumpur, pp 372–384Google Scholar
  40. 40.
    Kay SM (1993) Fundamentals of statistical signal processing, Prentice Hall, pp 27–81Google Scholar
  41. 41.
    Goch G, Ni K, Peng Y, Guenther A (2017) Future gear metrology based on areal measurements and improved holistic evaluations. CIRP Ann Manuf Technol 66(1):469–474. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Matthias Marcus Auerswald
    • 1
    Email author
  • Axel von Freyberg
    • 1
  • Andreas Fischer
    • 1
  1. 1.Bremen Institute for Metrology, Automation and Quality Science (BIMAQ)University of BremenBremenGermany

Personalised recommendations