Thermo-mechanical modelling of ball screw preload force variation in different working conditions

ORIGINAL ARTICLE
  • 15 Downloads

Abstract

Ball screws are robust and economical linear positioning systems widely employed in high-speed and high-precision machines. Due to precision and stability requirements, the preload force is considered one of the main parameters defining the axial stiffness and the maximum axial load of the ball screw feed drives. In high-speed motions, thermal effects are also considerably relevant regarding positioning precision and dynamic stability of the machine. The temperature increase and the thermal gradient between the screw, the balls and the nuts result in geometrical variations and, consequently, variations in the preload force. This paper presents a numerical modelling strategy to predict the preload variation due to temperature increase using a thermo-mechanical 3D finite element method (FEM)-based model for double nut-ball screw drives. Two different thermo-mechanical coupling strategies are compared, and the obtained results are validated with experimental measurements for different initial preload and linear speeds. In the mechanical analysis, the nut-screw ball contact interface, the offset-based preloading and the restrictions of the ball bearings are included in the model, while the thermal analysis considers heat generation and heat diffusion. The causes of the thermal preload variation are discussed considering the ball load distribution and the axial and radial thermal displacements of the contacting points.

Keywords

Ball screw Preload Thermo-mechanical model Ball load distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors would like to thank the funding of the Basque Government in the predoctoral program (PRE_2016_2_0240). The support of Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen (ISW) in the experimental tests, with special mention of P. Zahn, is acknowledged. The technical and financial support of Shuton, S.A. is also greatly acknowledged.

References

  1. 1.
    Altintas Y, Verl A, Brecher C, Uriarte L, Pritschow G (2011) Machine tool feed drives. CIRP Ann-Manuf Technol 60(2):779–796CrossRefGoogle Scholar
  2. 2.
    Weule H, Golz H (1991) Preload-control in ball screws — a new approach for machine tool building? CIRP Ann-Manuf Techn 40(1):383–386CrossRefGoogle Scholar
  3. 3.
    ISO 3408-5:2006 (2006) Ball screws. Part 5: Static and dynamic axial load ratings and operational lifeGoogle Scholar
  4. 4.
    Verl A, Frey S, Heinze T (2014) Double nut ball screw with improved operating characteristics. CIRP Ann-Manuf Technol 63(1):361–364CrossRefGoogle Scholar
  5. 5.
    Verl A, Frey S (2010) Correlation between feed velocity and preloading in ball screw drives. CIRP Ann-Manuf Technol 59(1):429–432CrossRefGoogle Scholar
  6. 6.
    Navarro y de Sosa I, Bucht A, Junker T, Pagel K, Drossel W (2014) Novel compensation of axial thermal expansion in ball screw drives. Prod Eng 8(3):397–406CrossRefGoogle Scholar
  7. 7.
    Oyanguren A, Zahn P, Alberdi AH, Larraṅaga J, Lechler A, Ulacia I (2016) Preload variation due to temperature increase in double nut ball screws. Prod Eng 10(4-5):529–537CrossRefGoogle Scholar
  8. 8.
    Carmichael GDT, Davies PB (1970) Measurement of thermally induced preloads in bearings. Strain 6 (4):162–165CrossRefGoogle Scholar
  9. 9.
    Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366CrossRefGoogle Scholar
  10. 10.
    Lin CW, Tu JF, Kamman J (2003) An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. Int J Mach Tools Manuf 43(10):1035–1050CrossRefGoogle Scholar
  11. 11.
    Takabi J, Khonsari M (2015) On the thermally-induced seizure in bearings: a review. Tribol Int 91:118–130CrossRefGoogle Scholar
  12. 12.
    Mei X, Tsutsumi M, Tao T, Sun N (2003) Study on the load distribution of ball screws with errors. Mech Mach Theory 38(11):1257–1269CrossRefMATHGoogle Scholar
  13. 13.
    Xu S, Sun YF, Shen H (2013) Load distribution of ball screw with contact angle variation. Appl Mech Mater 397-400:435–440CrossRefGoogle Scholar
  14. 14.
    Bertolaso R, Cheikh M, Barranger Y, Duprė J C, Germaneau A, Doumalin P (2014) Experimental and numerical study of the load distribution in a ball-screw system. J Mech Sci Technol 28(4):1411–1420CrossRefGoogle Scholar
  15. 15.
    Li Z, Fan K, Yang J, Zhang Y (2014) Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. Int J Adv Manuf Technol 73(5-8):773–782CrossRefGoogle Scholar
  16. 16.
    Jin C, Wu B, Hu Y (2015) Temperature distribution and thermal error prediction of a cnc feed system under varying operating conditions. Int J Adv Manuf Technol 77(9-12):1979–1992CrossRefGoogle Scholar
  17. 17.
    Shi H, Zhang D, Yang J, Ma C, Mei X, Gong G (2016) Experiment-based thermal error modeling method for dual ball screw feed system of precision machine tool. Int J Adv Manuf Technol 82(9-12):1693–1705CrossRefGoogle Scholar
  18. 18.
    Huang SC (1995) Analysis of a model to forecast thermal deformation of ball screw feed drive systems. Int J Mach Tools Manuf 35(8):1099–1104CrossRefGoogle Scholar
  19. 19.
    Shi H, Ma C, Yang J, Zhao L, Mei X, Gong G (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71CrossRefGoogle Scholar
  20. 20.
    Junyong X, Youmin H, Bo W, Tielin S (2009) Research on thermal dynamics characteristics and modeling approach of ball screw. Int J Adv Manuf Technol 43(5-6):421–430CrossRefGoogle Scholar
  21. 21.
    Yun WS, Kim SK, Cho DW (1999) Thermal error analysis for a cnc lathe feed drive system. Int J Mach Tools Manuf 39(7):1087–1101CrossRefGoogle Scholar
  22. 22.
    Fletcher S, Ford D (2003) Measuring and modelling heat transfer and thermal errors on a ballscrew feed drive system, vol 44, chap Laser Metrology and Machine Performance VI, pp 349–359Google Scholar
  23. 23.
    Xu Z, Liu X, Kim H, Shin J, Lyu S (2011) Thermal error forecast and performance evaluation for an air-cooling ball screw system. Int J Mach Tools Manuf 51(7):605–611CrossRefGoogle Scholar
  24. 24.
    Wu CH, Kung YT (2003) Thermal analysis for the feed drive system of a cnc machine center. Int J Mach Tools Manuf 43(15):1521–1528CrossRefGoogle Scholar
  25. 25.
    Yang A, Chai S, Hsu H, Kuo T, Wu W, Hsieh W, Hwang Y (2013) FEM-based modeling to simulate thermal deformation process for high-speed ball screw drive systems. Appl Mech Mater 481:171–179CrossRefGoogle Scholar
  26. 26.
    Wei CC, Horng J, Lin J (2012) Thermal analysis of a ball-screw system. Adv Mat Res 591-593:818–826CrossRefGoogle Scholar
  27. 27.
    Guo Y, Liu C (2002) Mechanical properties of hardened aisi 52100 steel in hard machining processes. J Manuf Sci E-T ASME 124(1):1–9MathSciNetCrossRefGoogle Scholar
  28. 28.
    Dadalau A, Groh K, Reu M, Verl A (2011) Modeling linear guide systems with cofem: equivalent models for rolling contact. Prod Eng 6(1):39–46CrossRefGoogle Scholar
  29. 29.
    Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New YorkMATHGoogle Scholar
  30. 30.
    Schaeffler Technical Guide STT (2013) Schaeffler Technologies AG & Co. KGGoogle Scholar
  31. 31.
    Bjrling M, Habchi W, Bair S, Larsson R, Marklund P (2013) Towards the true prediction of EHL friction. Tribol Int 66:19–26CrossRefGoogle Scholar
  32. 32.
    Wei C, Lai R (2011) Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds. Mech Mach Theory 46(7):880–898CrossRefMATHGoogle Scholar
  33. 33.
    Bergman TL, Incropera FP (2011) Introduction to heat transfer. Wiley, HobokenGoogle Scholar
  34. 34.
    Morgan VT (1975) The overall convective heat transfer from smooth circular cylinders. Adv Heat Transfer 11:199–264Google Scholar
  35. 35.
    Madhusudana CV, Madhusudana C (1996) Thermal contact conductance. Springer, BerlinCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mondragon Unibertsitatea - Faculty of EngineeringArrasate-MondragonSpain

Personalised recommendations