Fabrication of MWCNT-reinforced Al composite local foams using friction stir processing route

  • I. G. Papantoniou
  • H. P. Kyriakopoulou
  • D. I. Pantelis
  • D. E. Manolakos


The aim of the present research is the fabrication of MWCNT-reinforced Al composite foams on localized regions of metallic parts using a novel friction stir processing (FSP) route. This route consists of friction stir processing passes for the integration of the foaming and the stabilizing agents in the aluminum matrix (precursor specimens) and a separate foaming stage at a laboratory furnace. The precursor specimens were manufactured by mixing a blowing agent powder (0.4% w/w TiH2) and a stabilization agent nanopowder (2% w/w MWCNT) into the aluminum alloy matrix (AA5083-H111), using the intense stirring action of FSP. The porous aluminum obtained at the foaming stage has a medium porosity of 54% with a high circularity of pores. The microstructural investigation was performed by means of optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) technique. All of the above were correlated with microhardness distribution in both the precursor and the foamed specimens. The microstructure was found to be closely related to microhardness distribution perpendicular to the traversing direction of the FSP tool for both precursor and foamed specimens.


Composite metal foam Friction stir process Multiwall carbon nanotubes Local metal foam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibson LG, Ashby MF (1997) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  2. 2.
    Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, USAGoogle Scholar
  3. 3.
    Tzeng SC, Ma WP (2006) A novel approach to manufacturing and experimental investigation of closed-cell Al foams. Int J Adv Manuf Technol 28:1122–1128CrossRefGoogle Scholar
  4. 4.
    Gama BA, Bogetti TA, Fink BK, Yue CJ, Claar DT, Eiferte HH, Gillespie JW (2001) Aluminum foam integral armor: a new dimension in armor design. Compos Struct 52:381–395CrossRefGoogle Scholar
  5. 5.
    Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRefGoogle Scholar
  6. 6.
    Mouritz AP, Gellert E, Burchill P, Challis K (2001) Review of advanced composite structures for naval ships and submarines. Compos Struct 53:21–42CrossRefGoogle Scholar
  7. 7.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRefGoogle Scholar
  8. 8.
    Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans 39A:642–658CrossRefGoogle Scholar
  9. 9.
    Pantelis DI, Karakizis PN, Daniolos NM, Alexandratos SA, Papantoniou IG (2014) Study of Al2O3-Aluminum matrix composites fabrication using friction stir processing technique, Proceedings of the 11th International Conference “THE-A” 309–318Google Scholar
  10. 10.
    Shojaeefard MH, Akbari M, Asadi P, Khalkhali A (2017) The effect of reinforcement type on the microstructure, mechanical properties, and wear resistance of A356 matrix composites produced by FSP. Int J Adv Manuf Technol 91:1391–1407CrossRefGoogle Scholar
  11. 11.
    Sadeghi B, Shamanian M, Cavaliere P et al. (2017) Microstructural and mechanical behavior of bimodal reinforced Al-based composites produced by spark plasma sintering and FSP, Int J Adv Manuf Technol 1–14Google Scholar
  12. 12.
    Zang Z, Zeng X, Du J, Wang M, Tang X (2016) Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Opt Lett 41:3463–3466CrossRefGoogle Scholar
  13. 13.
    Pantelis DI, Karakizis PN, Daniolos NM, Charitidis CA, Koumoulos EP, Dragatogiannis DA (2016) Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater Manuf Process 31:264–274CrossRefGoogle Scholar
  14. 14.
    Hangai Y, Utsunomiya T (2009) Fabrication of porous aluminum by friction stir processing. Metall Mater Trans 40A:275–277CrossRefGoogle Scholar
  15. 15.
    Hangai Y, Utsunomiya T, Hasegawa M (2010) Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. J Mater Process Technol 210:288–292CrossRefGoogle Scholar
  16. 16.
    Utsunomiya T, Tamura K, Hangai Y, Kuwazuru O, Yoshikawa N (2010) Effects of tool rotating rate and pass number on pore structure of A6061 porous aluminum fabricated by using friction stir processing. Mater Trans 51:542–547CrossRefGoogle Scholar
  17. 17.
    Saito K, Hangai Y, Utsunomiya T, Kuwazuru O, Yoshikawa N (2014) Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys. Mater Sci Eng A 613:163–170CrossRefGoogle Scholar
  18. 18.
    Storjohann D, Barabash OM, David SA, Sklad PS, Bloom EE, Babu SS (2005) Fusion and friction stir welding of aluminium metal matrix composites. Metall Mater Trans 36A:3237–3247CrossRefGoogle Scholar
  19. 19.
    Asadi P, Besharati Givi MK, Akbari M (2016) Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int J Adv Manuf Technol 83:301–311CrossRefGoogle Scholar
  20. 20.
    Etter AL, Baudin T, Fredj N, Penelle R (2007) Recrystallization mechanisms in 5251 H14 and 5251O aluminum friction stir welds. Mater Sci Eng 445A:94–99CrossRefGoogle Scholar
  21. 21.
    Humphreys J, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Science, OxfordGoogle Scholar
  22. 22.
    Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 1115:48–574Google Scholar
  23. 23.
    Hallberg H, Wallin M, Ristinmaa M (2010) Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Mater Sci Eng A 527:1126–1134CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites. Mater Sci Eng A 483-484:148–152CrossRefGoogle Scholar
  25. 25.
    Prater T (2014) Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut 93:366–373CrossRefGoogle Scholar
  26. 26.
    Kunming Y, Xudong Y, Enzuo L, Chunsheng S, Liying M, Chunnian H, Qunying L, Jiajun L, Naiqin Z (2017) Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams. Mater Sci Eng A 690:294–302CrossRefGoogle Scholar
  27. 27.
    Wang J, Yang X, Zhang M, Li J, Shi C, Zhao N, Zou T (2015) A novel approach to obtain in-situ growth carbon nanotube reinforced aluminum foams with enhanced properties. Mater Lett 161:763–766CrossRefGoogle Scholar
  28. 28.
    Jiang B, Zhao NQ, Shi CS, Li JJ (2005) Processing of open cell aluminum foams with tailored porous morphology. Scr Mater 53:781–785CrossRefGoogle Scholar
  29. 29.
    Raj SV (2011) Microstructural characterization of metal foams: an examination of the applicability of the theoretical models for modeling foams. Mater Sci Eng A 528:5289–5295CrossRefGoogle Scholar
  30. 30.
    Bock J, Jacobi AM (2013) Geometric classification of open-cell metal foams using X-ray micro-computed tomography. Mater Charact 75:35–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • I. G. Papantoniou
    • 1
  • H. P. Kyriakopoulou
    • 2
  • D. I. Pantelis
    • 2
  • D. E. Manolakos
    • 1
  1. 1.School of Mechanical Engineering, Manufacturing Technology SectionNational Technical University of AthensZografosGreece
  2. 2.School of Naval Architecture and Marine Engineering, Shipbuilding Technology LaboratoryNational Technical University of AthensZografosGreece

Personalised recommendations