Optimization of peened-surface laser shock conditions by method of finite element and technique of design of experiments

  • M. Frija
  • M. Ayeb
  • R. Seddik
  • R. Fathallah
  • H. Sidhom


This paper presents a numerical simulation of the laser shock peening (LSP) process using the finite element method. The majority of controlling parameters of the LSP process have been taken into account. The LSP loading has been characterized by the use of a repetitive time Gaussian increment pressure applied uniformly at a circular impacted zone. The utilized model of the treated material behaviour law is the Johnson-Cook’s visco-elastic-plastic coupled with damage. The proposed model leads to determine the LSP surface modifications: (i) the in-depth residual stresses, (ii) the induced plastic strains and (iii) the superficial damage. These modifications can be significantly induced in few cases, particularly when the operating conditions are not well optimized. An application is carried out on the laser peened titanium aero-engine super alloy Ti-6Al-4V. A satisfactory correlation between the computed and experimental results is observed. Also, it is noted that the computed superficial damage values increase with the growth of the maximal peak pressure of the laser spot, which are physically consistent. Otherwise, in order to optimize the laser peening operating conditions, a design of experiments is established. It allows having surface-response relationships between the operating parameters and the three announced induced effects.


Laser shock peening (LSP) Finite element method (FEM) Residual stresses Surface work hardening Damage Design of experiments (DoE) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokol DW. (2002) Laser shock processing, Technical Bulletin No. 1, LSP Technologies, Inc.,Google Scholar
  2. 2.
    Ding K, Ye L (2006) Laser shock peening performance and process simulation. Woodhead Publishing Limited, Cambridge, England, ISBN 1855739291, pp 07–44CrossRefGoogle Scholar
  3. 3.
    Fairand BP, Clauer AH (1976) Use of laser generated shocks to improve the properties of metals and alloys. Ind Appl High Power Laser Technol 86:112–119CrossRefGoogle Scholar
  4. 4.
    Montross CS, Wei T, Ye L, Clark G, Mai Y-W (October 2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036CrossRefGoogle Scholar
  5. 5.
    Ivetic G (2011) Three-dimensional FEM analysis of laser shock peening of aluminum alloy 2024-T351 thin sheets. Int J Surf Eng 27:445–453CrossRefGoogle Scholar
  6. 6.
    Rodopoulos CA, Romero JS, Curtis SA, De los Rios ER, Peyre P (August 2003) Effect of controlled shot peening and laser shock peening on the fatigue performance of 2024-T351 aluminium alloy. J Mater Eng Perform 12(4):414–419CrossRefGoogle Scholar
  7. 7.
    Peyre P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Beranger G, Lemaitre C (2000) Surface modifications induced in 316L steel by laser peening and shot-peening, influence on pitting corrosion resistance. Mater Sci Eng A280:294–330CrossRefGoogle Scholar
  8. 8.
    Vaccari J (1992) Laser shocking extends fatigue life. Am Mach 6:21–23Google Scholar
  9. 9.
    Mannava S., (1998)On the fly laser shock peening-General Electric Company, U.S. Patent 5,756,965, 26Google Scholar
  10. 10.
    Allan H. Clauer, John H. Holbrook, Barry P. Fairand, (1981)Effects of laser induced shock waves on metals, shock waves and high-strain-rate phenomena in metals, Edited by: Marc A. Meyers, Lawrence E. Murr, book available from Plenum Publishing Corporation, 233 Spring Steel, New York, N. Y. 10013, pp. 675–703Google Scholar
  11. 11.
    Trdan U, Ocana JL, Grum J (2011) Surface modification of aluminium aloys with laser shock processing. J Mech Eng 57:385–393Google Scholar
  12. 12.
    Bogdan RI, Horia TM, Sanda BL (2014) The effects of laser shock processing on corrosion resistance of stainless steel AISI 316L. Solid State Phenom 216:210–215CrossRefGoogle Scholar
  13. 13.
    Gonzalez CR–, Martinez CF–, Rosas GG–, Ocana JL, Morales M, Porro JA (2011) Effect of laser shock processing on fatigue crack growth of duplex stainless steel. Mater Sci Eng A 528:914–919CrossRefGoogle Scholar
  14. 14.
    Liu KK, Hill MR (2009) The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons. Tribol Int 42:1250–1262CrossRefGoogle Scholar
  15. 15.
    Fabbro R, Peyre P, Berthe L, Scherpereel X (December 1998) Physics and applications of laser-shock processing. J Laser Appl 10:265–279CrossRefGoogle Scholar
  16. 16.
    Trdan U, Zagar S, Grum J (June 2016) Surface modification of laser- and shot- peened 6082 aluminium alloy; laser peening effect to pitting corrosion. Int J Struct Integr 2:9–21CrossRefGoogle Scholar
  17. 17.
    Karthik D, Swaroop S (2016) Influence of laser peening on phase transformation and corrosion resistance of AISI 321 steel. J Mater Eng Perform 25:2642–2650CrossRefGoogle Scholar
  18. 18.
    Wagner L, Mhaede M, Wollmann M, Altenberger I, Sano Y (2011) Surface layer properties and fatigue behavior in Al 7075-T73 and Ti-6Al-4V; comparing results after laser peening, shot peening and ball-burnishing. Int J Struct Integ 2:185–199CrossRefGoogle Scholar
  19. 19.
    Wang C, Shen XJ, An ZB, Zhou LC, Chai Y (2016) Effects of laser shock processing on microstructure and mechanical properties of K403 nickel alloy. Mater Des 89:582–588CrossRefGoogle Scholar
  20. 20.
    Hongchao Q (2015) Experimental investigation of laser peening on Ti 17 titanium alloy for rotor blade applications. Appl Surf Sci 351:524–530CrossRefGoogle Scholar
  21. 21.
    Fang YW, Li YH, He WF, Li PY (2013) Effects of laser shock processing with different parameters and ways on residual stresses fields of a TC4 alloy blade. J Mater Sci Eng 559:683–692CrossRefGoogle Scholar
  22. 22.
    Anand Kumar S, Ranganathan K, Sundar R, Ganesh Sundara Raman S, Kumar H, Kaul R, Oak SM, Kukreja LM, Bindra KS (2014) Influence of laser peening on microstructure and fatigue lives of Ti-6Al-4V. Trans Nonferrous Metals Soc China 24:3111–3117CrossRefGoogle Scholar
  23. 23.
    Ballard Patrick, (1991) Contraintes résiduelles induites par impact rapide—application au choc laser, Ecole Polytechnique, FranceGoogle Scholar
  24. 24.
    Braisted W, Brockman R (1999) Finite element simulation of laser shock peening. Int J Fatigue 21:719–724CrossRefGoogle Scholar
  25. 25.
    Wenwu Zhang Y, Yao L (2002) Micro scale laser shock processing of metallic components. J Manuf Sci Eng 124:369–378CrossRefGoogle Scholar
  26. 26.
    Arif Abul Fazal M (2003) Numerical prediction of plastic deformation and residual stresses induced by laser shock processing. J Mater Process Technol 136:120–138CrossRefGoogle Scholar
  27. 27.
    Peyre P, Sollier A, Chaieb I, Berthe L, Bartnicki E, Braham C, Fabbro R (2003) FEM simulation of residual stresses induced by laser peening. Eur Phys J Appl Phys 23:83–88CrossRefGoogle Scholar
  28. 28.
    Iheb Chaieb, (2004) Analyse et simulation des contraintes résiduelles induites par des traitements mécaniques de précontrainte en grenaillage et choc laser, Thèse de l’Université de Reims Champagne-ArdenneGoogle Scholar
  29. 29.
    Zhang W, Lawrence Yao Y, Noyan IC (2004) Microscale laser shock peening of thin films, part 1: experiment, modeling and simulation. J Manuf Sci Eng 126:10–17CrossRefGoogle Scholar
  30. 30.
    Yongxiang H, Zhenqiang Y, Jun H (2006) 3-D FEM simulation of laser shock processing. Surf Coat Technol 201:1426–1435CrossRefGoogle Scholar
  31. 31.
    Hu Y, Yao Z (2008) Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell. Int J Mach Tools Manuf 48(2):152–162CrossRefGoogle Scholar
  32. 32.
    Warren AW, Guo YB, Chen SC (2008) Massive parallel laser shock peening: simulation, analysis, and validation. Int J Fatigue 30(1):188–197CrossRefGoogle Scholar
  33. 33.
    Hu YX, Yao ZQ (2008) FEM simulation of residual stresses induced by laser shock with overlapping laser spots. J Acta Metall Sin (English Letters) 21(2):125–132CrossRefGoogle Scholar
  34. 34.
    Yang C, Hodgson PD, Liu Q, Ye L (26 May 2008) Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening. J Mater Process Technol 201(1–3):303–309CrossRefGoogle Scholar
  35. 35.
    Hu Y, Gong C, Yao Z, Hu J (6 May 2009) Investigation on the non-homogeneity of residual stress fields induced by laser shock peening. J Surf Coat Technol 203(23):3503–3508CrossRefGoogle Scholar
  36. 36.
    Hongbin Song, (2010) Analyse expérimentale et numérique de la distribution des contraintes résiduelles induites par choc-laser dans les alliages d’Aluminium, Thèse de l’Ecole Nationale d’Arts et Métiers Spécialité ‘Mécanique et matériaux’Google Scholar
  37. 37.
    Frija M, Fathallah R, Hassine T (2010) Finite element prediction of laser shock peened surface modifications in Ti-6Al-4V alloy. Key Eng Mater, Advan Fract Damage Mech VIII 417-418:853–856Google Scholar
  38. 38.
    Peyre P, Hfaiedh N, Song H (2011) Laser shock processing with two different laser sources on 2050-T8 aluminum alloy. Int J Struct Integ 2:87–100CrossRefGoogle Scholar
  39. 39.
    Kim JH, Kim YJ, Kim JS (2013) Effects of simulation parameters on residual stresses for laser shock peening finite element analysis. J Mech Sci Technol 27:2025–2034CrossRefGoogle Scholar
  40. 40.
    Kim JH, Lee JW (2013) Effects of simulation parameters on residual stresses in 3D finite element laser shock peening analysis. Glob J Res Eng Mech Mech Eng 13:1–10Google Scholar
  41. 41.
    Wei XL, Ling X (2014) Numerical modeling of residual stress induced by laser shock processing. Appl Surf Sci 301:557–563CrossRefGoogle Scholar
  42. 42.
    Neila Hfaiedh, Patrice Peyre, Hongbin Song, Ioana Popa, Vincent Ji, Vincent Vignal, Finite element analysis of laser shock peening of 2050-T8 aluminum alloy, Int J Fatigue, Vol. 70, pp. 480–489, 2015Google Scholar
  43. 43.
    Hibbit, Karlsson & Sorensen, Inc., (2003) ABAQUS/Explicit User’s manual, Vol II, Version 6.4–1Google Scholar
  44. 44.
    Johnson, G.R., Cook, W.H., (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics 54, pp. 541–547Google Scholar
  45. 45.
    Gregory Kay, (2003) Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model, Office of Aviation Research Washington, DC 20591, SeptemberGoogle Scholar
  46. 46.
    P.R. Smith, M. J. Shepard, P.S. Prevéy III, A.H. Clauer, Effect of power density and pulse repetition on laser shock peening of Ti-6AI-4V, J Mater Eng Perform, Vol.9, pp. 33–37, 2000Google Scholar
  47. 47.
    Amarchinta HK, Grandhi RV, Langer K, Strangel DS (2009) Material model validation for laser shock peening process simulation. Model Simul Mater Sci Eng 17:015010–015015CrossRefGoogle Scholar
  48. 48.
    Manual MU (2001) (Release 15), Making data analysis easier, USA. MINITAB Inc. State College, PAGoogle Scholar
  49. 49.
    ReliaSoft, Experimental Design and Analysis Reference,, 379 pages
  50. 50.
    C.B. Dane, L.A. Hackel, J. Daly, J. Harrisson, (1998) High laser power for peening of metals enabling production technology, Advanced Aerospace Materials and Processes Conference’98, Tysons Corner, Virginia, June 15–18Google Scholar
  51. 51.
    Brent Dane C, Hackel LA, Daly J, Hamson J (1998) Shot peening with lasers. J Adv Mater Process 153:37–38Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • M. Frija
    • 1
  • M. Ayeb
    • 2
  • R. Seddik
    • 2
  • R. Fathallah
    • 2
  • H. Sidhom
    • 3
  1. 1.Institute of Applied Sciences and Technology of Sousse (ISSATSo)University of SousseSousseTunisia
  2. 2.National Engineering School of Sousse (ENISo)University of SousseSousseTunisia
  3. 3.National Higher Engineering School of Tunis (ENSIT)University of TunisTunisTunisia

Personalised recommendations