Advertisement

Experimental and numerical formability investigation of FML sheets with glass fiber reinforced core

  • Abdolhossein Jalali Aghchai
  • Soroush Khatami
ORIGINAL ARTICLE
  • 56 Downloads

Abstract

In this study, the formability of the FML (fiber metal laminate) sheets has been investigated by experimental and numerical methods. The sheets consist of an aluminum skin and a glass fiber reinforced core. Uniaxial tensile and stretch forming tests were performed to extract the forming limit diagram (FLD), experimentally. M-K (Marciniak-Kuczynski) method was implemented to extracting the FLD of the FMLs, numerically. The effect of skin and core thicknesses on formability was studied in variable and constant total thickness by numerical method. Finally, it has been cleared that the numerical model predicts the necking strains with less than 9% error. Also, it has been concluded that with doubling of core thickness in constant and variable total thickness, the average formability improves 15 and 23%, respectively, and with tripling core thickness, these values reach to 26 and 53%. In addition, with twofold increase of skin thickness in constant core thickness, the average formability enhances up to 76%.

Keywords

FML sheets Forming limit diagram M-K method Finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mori T, Kurimoto S (1996) Press-formability of stainless steel and aluminum clad sheet. J Mater Process Technol 56(1):242–253CrossRefGoogle Scholar
  2. 2.
    Keeler SP, Backofen WA (1963) Plastic instability and fracture in sheets stretched over rigid punches. Asm Trans Q 56(1):25–48Google Scholar
  3. 3.
    Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. SAE technical paperGoogle Scholar
  4. 4.
    Ghosh AK, Hecker SS (1975) Failure in thin sheets stretched over rigid punches. Metall Trans A 6(5):1065–1074CrossRefGoogle Scholar
  5. 5.
    Kim KJ, Kim C-W, Choi B-I, Sung CW, Kim HY, Won S-T, Ryu H-Y (2008) Formability of aluminum 5182-polypropylene sandwich sheet for automotive application. J Solid Mech Mater Eng 2(4):574–581CrossRefGoogle Scholar
  6. 6.
    Alcaraz J (1999) Instabilities in bimetallic layers. Int J Plast 15(12):1341–1358CrossRefzbMATHGoogle Scholar
  7. 7.
    Callister WD (2003) Materials science and engineering an introduction, 6th edn. WileyGoogle Scholar
  8. 8.
    Kim K, Kim D, Choi S, Chung K, Shin K, Barlat F, Oh K, Youn J (2003) Formability of AA5182/polypropylene/AA5182 sandwich sheets. J Mater Process Technol 139(1):1–7CrossRefGoogle Scholar
  9. 9.
    Marciniak Z, Kuczyński K (1967) Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci 9(9):609–620CrossRefzbMATHGoogle Scholar
  10. 10.
    Manesh HD, Taheri AK (2003) Bond strength and formability of an aluminum-clad steel sheet. J Alloys Compd 361(1):138–143CrossRefGoogle Scholar
  11. 11.
    Gresham J, Cantwell W, Cardew-Hall M, Compston P, Kalyanasundaram S (2006) Drawing behaviour of metal–composite sandwich structures. Compos Struct 75(1):305–312CrossRefGoogle Scholar
  12. 12.
    Contorno D, Filice L, Fratini L, Micari F (2006) Forming of aluminum foam sandwich panels: numerical simulations and experimental tests. J Mater Process Technol 177(1):364–367CrossRefGoogle Scholar
  13. 13.
    Aghchai AJ, Shakeri M, Mollaei-Dariani B (2008) Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12). Proc Inst Mech Eng B J Eng Manuf 222(9):1131–1138CrossRefGoogle Scholar
  14. 14.
    Parsa M, Ettehad M, Al Ahkami SN (2009) FLD determination of al 3105/polypropylene/Al 3105 sandwich sheet using numerical calculation and experimental investigations. Int J Mater Form 2(1):407–410CrossRefGoogle Scholar
  15. 15.
    Zhang X, Tan M, Yang T, Xu X, Wang J (2011) Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling. Bull Mater Sci 34(4):805–810CrossRefGoogle Scholar
  16. 16.
    Sinmazçelik T, Avcu E, Bora MÖ, Çoban O (2011) A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des 32(7):3671–3685CrossRefGoogle Scholar
  17. 17.
    Sokolova OA, Carradò A, Palkowski H (2011) Metal–polymer–metal sandwiches with local metal reinforcements: a study on formability by deep drawing and bending. Compos Struct 94(1):1–7CrossRefGoogle Scholar
  18. 18.
    Aghchai AJ, Shakeri M, Dariani BM (2013) Influences of material properties of components on formability of two-layer metallic sheets. Int J Adv Manuf Technol 66(5–8):809–823CrossRefGoogle Scholar
  19. 19.
    Kalyanasundaram S, DharMalingam S, Venkatesan S, Sexton A (2013) Effect of process parameters during forming of self reinforced–PP based fiber metal laminate. Compos Struct 97:332–337CrossRefGoogle Scholar
  20. 20.
    Rajkumar G, Krishna M, Narasimhamurthy H, Keshavamurthy Y, Nataraj J (2014) Investigation of tensile and bending behavior of aluminum based hybrid fiber metal laminates. Procedia Mater Sci 5:60–68CrossRefGoogle Scholar
  21. 21.
    Prasad KS, Kamal T, Panda S, Kar S, Murty SN, Sharma S (2015) Finite element validation of forming limit diagram of IN-718 sheet metal. Mater Today Proc 2(4–5):2037–2045CrossRefGoogle Scholar
  22. 22.
    Rajabi A, Kadkhodayan M, Manoochehri M, Farjadfar R (2015) Deep-drawing of thermoplastic metal-composite structures: experimental investigations, statistical analyses and finite element modeling. J Mater Process Technol 215:159–170CrossRefGoogle Scholar
  23. 23.
    Foteinopoulos P, Stavropoulos P, Papacharalampopoulos A, Chryssolouris G (2016) Unified approach in design and manufacturing optimization of hybrid metal-composites parts. Procedia CIRP 55:59–64CrossRefGoogle Scholar
  24. 24.
    Ramzi BH, Sebastien T, Fabrice R, Gemala H, Pierrick M (2017) Numerical prediction of the forming limit diagrams of thin sheet metal using SPIF tests. Procedia Eng 183:113–118CrossRefGoogle Scholar
  25. 25.
    Karajibani E, Hashemi R, Sedighi M (2017) Forming limit diagram of aluminum-copper two-layer sheets: numerical simulations and experimental verifications. Int J Adv Manuf Technol 90(9–12):2713–2722CrossRefGoogle Scholar
  26. 26.
    ABAQUS analysis user’s manual, version 6.14. ABAQUS IncGoogle Scholar
  27. 27.
    Liu J, Liu W, Xue W (2013) Forming limit diagram prediction of AA5052/polyethylene/AA5052 sandwich sheets. Mater Des 46:112–120CrossRefGoogle Scholar
  28. 28.
    Zafar R, Lang L, Zhang R (2014) Experimental and numerical evaluation of multilayer sheet forming process parameters for light weight structures using innovative methodology. Int J Mater Form:1–13Google Scholar
  29. 29.
    Hashemi R, Mamusi H, Masoumi A (2014) A simulation-based approach to the determination of forming limit diagrams. Proc Inst Mech Eng B J Eng Manuf:0954405414522448Google Scholar
  30. 30.
    J-g LIU, Wei L, J-x WANG (2012) Influence of interfacial adhesion strength on formability of AA5052/polyethylene/AA5052 sandwich sheet. Trans Nonferrous Metals Soc China 22:s395–s401CrossRefGoogle Scholar
  31. 31.
    Morovvati MR, Fatemi A, Sadighi M (2011) Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheet metals in deep drawing process. Int J Adv Manuf Technol 54(1–4):113–121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations