Skip to main content
Log in

Effects of tool electrode size on surface characteristics in micro-EDM

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-electrical discharge machining (micro-EDM) is one of the most effective and economical processing methods for micro-features with good dimensional accuracy and repeatability. During micro-EDM, the energy stored in stray capacitance is significant due to the low discharge energy. The stray capacitance changes as tool electrode size changes, thus affecting machining performances; this is the so-called scaling effect in micro-EDM. The effects of tool electrode size on surface characteristics tend to be ignored although it is significant. In this study, micro-EDM experiments were conducted using tool electrodes with different diameters. When machining with lower energy, the tool electrode size exerted significant influence on surface roughness and material migration—scaling effect was significant in low energy discharge. When machining in deionized water, this scaling effect was weakened due to larger discharge gap and ability to easily remove the melted material. The results presented here may provide a better understanding of micro-EDM scaling effect in aspect of surface topography, as well as a reference for building accurate machining performance prediction models of micro-EDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li CP, Kim M-Y, Islam MM, Ko TJ (2016) Mechanism analysis of hybrid machining process comprising EDM and end milling. J Mater Process Technol 237:309–319

    Article  Google Scholar 

  2. Wang K, Zhang Q, Liu Q, Zhu G, Zhang J (2017) Experimental study on micro electrical discharge machining of porous stainless steel. Int J Adv Manuf Technol 90(9):2589–2595. https://doi.org/10.1007/s00170-016-9611-3

    Article  Google Scholar 

  3. Pandey A, Brahmankar P (2016) A method to predict possibility of arcing in EDM of TiB2p reinforced ferrous matrix composite. Int J Adv Manuf Technol 86(9):1–13):2837–2849

    Article  Google Scholar 

  4. Yilmaz O, Bozdana AT, Okka MA (2014) An intelligent and automated system for electrical discharge drilling of aerospace alloys: Inconel 718 and Ti-6Al-4V. Int J Adv Manuf Technol 74(9–12):1323–1336

    Article  Google Scholar 

  5. Muthuramalingam T, Mohan B (2013) Influence of discharge current pulse on machinability in electrical discharge machining. Mater Manuf Process 28(4):375–380

    Article  Google Scholar 

  6. Wang K, Zhang Q, Zhu G, Liu Q, Huang Y (2017) Experimental study on micro electrical discharge machining with helical electrode. Int J Adv Manuf Technol 5–8:1–7

    Google Scholar 

  7. Kumar P, Singh PK, Kumar D (2017) A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes. Mater Manuf Process 32(5):564–572

    Article  Google Scholar 

  8. Li L, Feng L, Bai X, Li ZY (2016) Surface characteristics of Ti–6Al–4V alloy by EDM with Cu–SiC composite electrode. Appl Surf Sci 388:546–550. https://doi.org/10.1016/j.apsusc.2015.10.145

    Article  Google Scholar 

  9. Chen S-L, Lin M-H, Huang G-X, Wang C-C (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311:47–53. https://doi.org/10.1016/j.apsusc.2014.04.204

    Article  Google Scholar 

  10. Huang H, Yan J (2015) On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining. Appl Surf Sci 355:1306–1315. https://doi.org/10.1016/j.apsusc.2015.08.239

    Article  Google Scholar 

  11. Jahan MP, Wong YS, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209(8):3956–3967. https://doi.org/10.1016/j.jmatprotec.2008.09.015

    Article  Google Scholar 

  12. Maradia U, Wegener K, Stirnimann J, Knaak R, Boccadoro M (2013) Investigation of the scaling effects in meso-micro EDM. In: ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, pp V02BT02A038-V002BT002A038

  13. Liu Q, Zhang Q, Zhang M, Zhang J (2015) Effects of grain size of AISI 304 on the machining performances in micro electrical discharge machining. Proc Inst Mech Eng B J Eng Manuf 231:359–366. https://doi.org/10.1177/0954405415573062

    Article  Google Scholar 

  14. Lee HT, Rehbach WP, Tai TY, Hsu FC (2004) Relationship between electrode size and surface cracking in the EDM machining process. J Mater Sci 39(23):6981–6986

    Article  Google Scholar 

  15. D’Urso G, Ravasio C (2016) The effects of electrode size and discharged power on micro-electro-discharge machining drilling of stainless steel. Adv Mech Eng 8(5):1687814016648646. https://doi.org/10.1177/1687814016648646

  16. Peças P, Henriques E (2003) Influence of silicon powder-mixed dielectric on conventional electrical discharge machining. Int J Mach Tools Manuf 43(14):1465–1471. https://doi.org/10.1016/s0890-6955(03)00169-x

    Article  Google Scholar 

  17. Liu GZ, Shao H (2003) Space-charge limiting current in spherical cathode diodes. Chin Phys 12(2):204–207

    Article  Google Scholar 

  18. Wang Y, Dai L, Lin F, Yao X (2014) Optimization of a triggered vacuum switch with multirod electrodes system. IEEE Trans Plasma Sci 42(1):162–167

    Article  Google Scholar 

  19. Miller HC (1967) Change in field intensification factor β of an electrode projection (whisker) at short gap lengths. J Appl Phys 38(11):4501–4504

    Article  Google Scholar 

  20. Chung DK, Shin HS, Kim BH, Park MS, Chu CN (2009) Surface finishing of micro-EDM holes using deionized water. J Micromech Microeng 19(4):045025. https://doi.org/10.1088/0960-1317/19/4/045025

    Article  Google Scholar 

  21. Chung DK, Lee KH, Jeong J, Chu CN (2014) Machining characteristics on electrochemical finish combined with micro EDM using deionized water. Int J Precis Eng Manuf 15(9):1785–1791. https://doi.org/10.1007/s12541-014-0530-7

    Article  Google Scholar 

Download references

Funding

The authors appreciate the support from the National Natural Science Foundation of China (Grant No. 51375274, 51775316) and Breeding Project of Interdisciplinary of Shandong University (Grant No. 2016JC008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinhe Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhang, Q., Zhu, G. et al. Effects of tool electrode size on surface characteristics in micro-EDM. Int J Adv Manuf Technol 96, 3909–3916 (2018). https://doi.org/10.1007/s00170-018-1775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1775-6

Keywords

Navigation