Dynamic simulation of powder packing structure for powder bed additive manufacturing



Powder packing structure is a critical parameter of powder bed-based additive manufacturing (AM). Experimental characterization of powder is typically limited to measuring bulk properties, whereas many numerical models of AM powder packing are based on geometrical consideration without accounting for particle-to-particle interactions. In the present paper, the powder packing dynamics is simulated using a discrete element method (DEM)-based model that solves the mechanical contact forces and moments between individual particles. As DEM uses explicit time integration, a main challenge in modeling dynamics of metallic powder packing is the need for extremely fine time increment size (e.g., in the order of 1 ns for a 10-μm-diameter particle). The effect of mass scaling, employed for speeding up the calculation, on the simulation results is examined in a test case of powder particles packed inside a box container. The calculated packing density for two different particle size distributions is validated against independent literature data for laser powder bed AM with AISI 316L stainless steel powder. The sensitivity of key input parameters (e.g., friction coefficient) is further evaluated in this test case. The powder packing model is then applied to a practical situation of binder jet AM involving rolling of multiple layers of IN718 powder particles onto a powder bed, for which the calculated packing density is also validated with independent literature data.


Additive manufacturing Packing density Discrete element method Powder bed Binder jet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



WZ would like to acknowledge the support from U.S. NASA ESI Program, Award No. NNX17AD13G. Finally, the authors thank Dr. Ryan Dehoff of Oak Ridge National Laboratory (in Oak Ridge, TN, USA) for intellectual contribution to this work.

Funding information

This research is supported in part by a grant from U.S. Office of Naval Research (ONR), Award No. N00014-14-1-0688.


  1. 1.
    Sames W, List F, Pannala S, Dehoff R, Babu S (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev:1–46Google Scholar
  2. 2.
    Mireles J, Terrazas C, Gaytan SM, Roberson DA, Wicker RB (2015) Closed-loop automatic feedback control in electron beam melting. Int J Adv Manuf Technol 78(5):1193–1199CrossRefGoogle Scholar
  3. 3.
    Zhou JH, Zhang YW, Chen JK (2009) Numerical simulation of random packing of spherical particles for powder-based additive manufacturing. J Manuf Sci Eng 131(3):031004CrossRefGoogle Scholar
  4. 4.
    Caiazzo F, Alfieri V, Corrado G, Argenio P (2017) Laser powder-bed fusion of Inconel 718 to manufacture turbine blades. Int J Adv Manuf Technol 93(9–12):4023–4031CrossRefGoogle Scholar
  5. 5.
    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRefGoogle Scholar
  6. 6.
    Liu B, Wildman R, Tuck C, Ashcroft I, Hague R (2011) Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process, In Proc of Solid Freeform Fabr Symp, Austin: 227–238Google Scholar
  7. 7.
    Li Y, Gu D (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867CrossRefGoogle Scholar
  8. 8.
    Scharowsky T, Bauereiß A, Körner C (2017) Influence of the hatching strategy on consolidation during selective electron beam melting of Ti-6Al-4V. Int J Adv Manuf Technol 92(5):2809–2818CrossRefGoogle Scholar
  9. 9.
    Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRefGoogle Scholar
  10. 10.
    Lee YS, Zhang W (2015) Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, In Proc of Solid Freeform Fabr Symp, Austin: 1154–1165Google Scholar
  11. 11.
    Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214(11):2627–2636CrossRefGoogle Scholar
  12. 12.
    Gurtler FJ, Karg M, Leitz KH, Schmidt M (2013) Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method. Phys Procedia 41:874–879CrossRefGoogle Scholar
  13. 13.
    Krzyzanowski M, Svyetlichnyy D, Stevenson G, Rainforth WM (2016) Powder bed generation in integrated modelling of additive layer manufacturing of orthopaedic implants. Int J Adv Manuf Technol 87(1):519–530CrossRefGoogle Scholar
  14. 14.
    Nandwana P, Peter WH, Dehoff RR, Lowe LE, Kirka MM, Medina F, Babu SS (2016) Recyclability study on Inconel 718 and Ti-6Al-4V powders for use in electron beam melting. Metall Mater Trans B Process Metall Mater Process Sci 47(1):754–762CrossRefGoogle Scholar
  15. 15.
    Bai Y, Wagner G, Williams CB (2015) Effect of bimodal powder mixture on powder packing density and sintered density in binder jetting of metals, In Proc of Solid Freeform Fabr Symp, Austin: 758–771Google Scholar
  16. 16.
    Nandwana P, Elliott AM, Siddel D, Merriman A, Peter WH, Babu SS (2017) Powder bed binder jet 3D printing of Inconel 718: densification, microstructural evolution and challenges. Curr Opin Solid State Mater Sci 21(4):207–218CrossRefGoogle Scholar
  17. 17.
    Parteli EJ, Pöschel T (2016) Particle-based simulation of powder application in additive manufacturing. Powder Technol 288:96–102CrossRefGoogle Scholar
  18. 18.
    Markl M, Ammer R, Rüde U, Körner C (2015) Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. Int J Adv Manuf Technol 78(1–4):239–247CrossRefGoogle Scholar
  19. 19.
    He D, Ekere NN, Cai L (1999) Computer simulation of random packing of unequal particles. Phys Rev E 60(6):7098–7104CrossRefGoogle Scholar
  20. 20.
    Shi Y, Zhang YW (2008) Simulation of random packing of spherical particles with different size distributions. Appl Phys A Mater Sci Process 92(3):621–626CrossRefGoogle Scholar
  21. 21.
    Yang RY, Zou RP, Yu AB (2000) Computer simulation of the packing of fine particles. Phys Rev E 62(3):3900–3908CrossRefGoogle Scholar
  22. 22.
    Jia T, Zhang YW, Chen JK (2011) Dynamic simulation of particle packing with different size distributions. J Manuf Sci Eng 133(2):4CrossRefGoogle Scholar
  23. 23.
    Jia T, Zhang YW, Chen JK (2012) Simulation of granular packing of particles with different size distributions. Comput Mater Sci 51(1):172–180CrossRefGoogle Scholar
  24. 24.
    Dou X, Mao YJ, Zhang YW (2014) Effects of contact force model and size distribution on microsized granular packing. J Manuf Sci Eng 136(2):9CrossRefGoogle Scholar
  25. 25.
    Kovaleva I, Kovalev O, Smurov I (2014) Model of heat and mass transfer in random packing layer of powder particles in selective laser melting. Phys Procedia 56:400–410CrossRefGoogle Scholar
  26. 26.
    Mindt HW, Megahed M, Lavery NP, Holmes MA, Brown SGR (2016) Powder bed layer characteristics: the overseen first-order process input. Metall Mater Trans A 47(8):3811–3822CrossRefGoogle Scholar
  27. 27.
    Lee Y, Zhang W (2016) Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf 12:178–188CrossRefGoogle Scholar
  28. 28.
    Haeri S, Wang Y, Ghita O, Sun J (2017) Discrete element simulation and experimental study of powder spreading process in additive manufacturing. Powder Technol 306:45–54CrossRefGoogle Scholar
  29. 29.
    Pinkerton AJ, Li L, Lau WS (2003) Effects of powder geometry and composition in coaxial laser deposition of 316L steel for rapid prototyping. CIRP Ann-Manuf Technol 52(1):181–184CrossRefGoogle Scholar
  30. 30.
    Spierings A, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J 17(3):195–202CrossRefGoogle Scholar
  31. 31.
    A.M. Elliott, P. Nandwana, D. Siddel, Compton BG (2016) A method for measuring powder bed density in binder jet additive manufacturing process and the powder feedstock characteristics influencing the powder bed density, In Proc of Solid Freeform Fabr Symp, Austin: 1031–1037Google Scholar
  32. 32.
    Schmid M, Amado A, Wegener K (2014) Materials perspective of polymers for additive manufacturing with selective laser sintering. J Mater Res 29:1824–1832CrossRefGoogle Scholar
  33. 33.
    Cheng YF, Guo SJ, Lai HY (2000) Dynamic simulation of random packing of spherical particles. Powder Technol 107(1–2):123–130CrossRefGoogle Scholar
  34. 34.
    Spierings A, Levy G (2009) Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades, In Proc of Solid Freeform Fabr Symp, Austin: 342–353Google Scholar
  35. 35.
    Šmilauer V, Catalano E, Chareyre B, Dorofeenko S, Duriez J, Gladky A, Kozicki J, Modenese C, Scholtès L, Sibille L, Stránský J, and Thoeni K (2010) Yade documentation (Šmilauer V, ed.), The Yade project, 1st ed.,
  36. 36.
    Karapatis NP, Egger G, Gygax PE, Glardon R (1999) Optimization of powder layer density in selective laser sintering, In Proc of Solid Freeform Fabr Symp, Austin: 255–263Google Scholar
  37. 37.
    Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453(7195):629–632CrossRefGoogle Scholar
  38. 38.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65CrossRefGoogle Scholar
  39. 39.
    Bourrier F, Kneib F, Chareyre B, Fourcaud T (2013) Discrete modeling of granular soils reinforcement by plant roots. Ecol Eng 61(part C):646–657CrossRefGoogle Scholar
  40. 40.
    Kozicki J, Donzé FV (2008) A new open-source software developed for numerical simulations using discrete modeling methods. Comput Methods Appl Mech Eng 197(49–50):4429–4443CrossRefMATHGoogle Scholar
  41. 41.
    Uskoković D, Exner HE (1990) The kinetics of contact formation during sintering by diffusion mechanisms. In: Sōmiya S, Moriyoshi Y (eds) Sintering key papers. Springer, Dordrecht, Netherlands, pp 111–146.
  42. 42.
    Ai J, Chen J-F, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282CrossRefGoogle Scholar
  43. 43.
    Chareyre B, Villard P (2005) Dynamic spar elements and discrete element methods in two dimensions for the modeling of soil-inclusion problems. J Eng Mech ASCE 131(7):689–698CrossRefGoogle Scholar
  44. 44.
    Shiu WJ, Donze FV, Daudeville L (2008) Compaction process in concrete during missile impact: a DEM analysis. Comput Concr 5(4):329–342CrossRefGoogle Scholar
  45. 45.
    O’Sullivan C, Cui L, Bray JD (2004) Three-dimensional discrete element simulations of direct shear tests, In Proc of the 2nd Int PFC Symp, Kyoto: 373–382Google Scholar
  46. 46.
    Morgan JK, Boettcher MS (1999) Numerical simulations of granular shear zones using the distinct element method: 1. Shear zone kinematics and the micromechanics of localization. J Geophys Res 104(B2):2703–2719CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Manufacturing Demonstration FacilityOak Ridge National LaboratoryKnoxvilleUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Welding Engineering Program, Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations