Advertisement

Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminum alloys under varied parameters

  • V. Ebrahimzadeh
  • M. Paidar
  • M. A. Safarkhanian
  • O. Oladimeji Ojo
ORIGINAL ARTICLE

Abstract

This work aims at studying the effect of triflute pin tools on single-pass orbital friction stir lap welding of AA5456-H321/AA5456-O alloys by varying pin length, tool rotational, and travel speeds. The mechanical properties of welds were examined while the microstructures and fracture modes of welds were observed and analyzed via the aid of an optical microscope, scanning electron microscope, and energy dispersive X-ray spectroscopy. The results show that upward-thrust flow and intermingling of the alloys are directly improved with an increase in tool rotational speed. Strengthening precipitate dissolution (AA5456-H321) and grain size strengthening (AA5456-O) occur in the stir zones. Weld samples without volumetric flow defect/microvoids are obtained as the tool rotational speeds are increased. Optimum weld strength of 303 MPa was obtained at tool rotational and travel speeds of 900 rpm and 45 mm/min, respectively. Fracture location and nature of dimples are influenced by the level of tool rotational speed.

Keywords

Orbital friction stir lap welding Aluminum alloy Microstructure Mechanical properties Fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lammlein DH, Gibson BT, DeLapp DR, Cox SAM, Cook GE (2011) The friction stir welding of small-diameter pipe: an experimental and numerical proof of concept for automation and manufacturing. Proc IMechE 226(3):383–398CrossRefGoogle Scholar
  2. 2.
    Defalco J, Steel R (2009) Friction stir process now welds steel pipe. The Welding Journal 88:44–48Google Scholar
  3. 3.
    Kumar A, Fairchild DP, Macia ML, Anderson TD, Jin HW, Ayer R, Ozekcin A (2010) Research progress on friction stir welding of pipeline steels. In: Proceedings of the 8th International Pipeline Conference IPC2010, September 27–October 1, CalgaryGoogle Scholar
  4. 4.
    Feng Z, Steel R, Packer S, David SA (2009) Friction stir welding of API grade 65 steel pipes. In: Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, July 26–30, PragueGoogle Scholar
  5. 5.
    Ding RJ, Carter RW (2001) Orbital friction stir weld system. US Patent No: 6259052 B1Google Scholar
  6. 6.
    D’Urso G, Longo M, Giardini C (2013) Microstructure and mechanical properties of friction stir welded AA6060-T6 tubes. Key Eng Mater 554–557:977–984.  https://doi.org/10.4028/www.scientific.net/KEM.554-557.977 CrossRefGoogle Scholar
  7. 7.
    Engelhard G, Hillers T (2003) Orbital friction stir welding of aluminum pipes. In: Welding in plant and tank construction proceedings, Munich, 18–21 Feb 2003Google Scholar
  8. 8.
    Dubourg L, Gholipour J, Jahazi M (2009) Friction stir welding of 2024-T3 aluminum tubes for hydroforming application. In: Trends in Welding Research 2008: Proceedings of the 8th International Conference, Pine Mountain, Georgia 01, 549–556Google Scholar
  9. 9.
    Ismail A, Awang M, Fawad H, Ahmad K (2013) Friction stir welding on aluminum alloy 6063 pipe. In: 7th Asia Pacific IIW International Congress (IIW 2013), July 2013, SingaporeGoogle Scholar
  10. 10.
    Yuan SJ, Hu ZL, Wang XS (2012) Evaluation of formability and material characteristics of aluminum alloy friction stir welded tube produced by a novel process. Mater Sci Eng A 543:210–216.  https://doi.org/10.1016/j.msea.2012.02.076 CrossRefGoogle Scholar
  11. 11.
    Hu ZL, Yuan SJ, Wang XS, Liu G, Liu HJ (2012) Microstructure and mechanical properties of Al–Cu–Mg alloy tube fabricated by friction stir welding and tube spinning. Scr Mater 66(7):427–430.  https://doi.org/10.1016/j.scriptamat.2011.12.006 CrossRefGoogle Scholar
  12. 12.
    Yuan SJ, Hu ZL, Wang XS (2012) Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Materials Science & Engineering A 558:586–591.  https://doi.org/10.1016/j.msea.2012.08.056 CrossRefGoogle Scholar
  13. 13.
    Wang XS, Hu ZL, Yuan SJ, Hua L (2014) Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application. Materials Science & Engineering A 607:245–252.  https://doi.org/10.1016/j.msea.2014.03.125 CrossRefGoogle Scholar
  14. 14.
    Aval HJ, Naghibi MF (2017) Orbital friction stir lap welding in tubular parts of aluminum alloy AA5083. Sci Technol Weld Join 22(7):562–572.  https://doi.org/10.1080/13621718.2016.1275099 CrossRefGoogle Scholar
  15. 15.
    Pabandi HK, Jashnani HR, Paidar M (2018) Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys. J Manuf Process 31:214–220.  https://doi.org/10.1016/j.jmapro.2017.11.019 CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Zhang HW (2009) Numerical studies on the effect of transverse speed in friction stir welding. Mater Des 30(3):900–907.  https://doi.org/10.1016/j.matdes.2008.05.029 CrossRefGoogle Scholar
  17. 17.
    Shirazi H, Kheirandish S, Safarkhanian MA (2015) Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy. Measurement 76:62–69.  https://doi.org/10.1016/j.measurement.2015.08.001 CrossRefGoogle Scholar
  18. 18.
    Wan ZY, Zhang Z, Zhou X (2017) Finite element modeling of grain growth by point tracking method in friction stir welding of AA6082-T6. Int J Adv Manuf Technol 90(9):3567–3574.  https://doi.org/10.1007/s00170-016-9632-y CrossRefGoogle Scholar
  19. 19.
    Oladimeji OO, Taban E, Kaluc E (2016) Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds. Mater Des 108:518–528.  https://doi.org/10.1016/j.matdes.2016.07.013 CrossRefGoogle Scholar
  20. 20.
    Ojo OO, Taban E, Kaluc E (2015) Friction stir spot welding of aluminum alloys: a recent review. Material Testing 57(7–8):609–627.  https://doi.org/10.3139/120.110752 CrossRefGoogle Scholar
  21. 21.
    Sato YS, Park SHC, Kokawa H (2001) Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall Mater Trans A 32A:3033–3042CrossRefGoogle Scholar
  22. 22.
    Fonda RW, Pao PS, Jones HN, Feng CR, Connolly BJ, Davenport AJ (2009) Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456. Mater Sci Eng A 519(1-2):1–8.  https://doi.org/10.1016/j.msea.2009.04.034 CrossRefGoogle Scholar
  23. 23.
    Salari E, Jahazi M, Khodabandeh A, Ghasemi-Nanesa H (2014) Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater Des 58:381–389.  https://doi.org/10.1016/j.matdes.2014.02.005 CrossRefGoogle Scholar
  24. 24.
    Wang R, Guim J, Yao S, Cheng Y, Lu G, Huang M (1986) High-temperature X-ray diffraction study of the crystallization process in rapidly quenched Al6(Mn,Fe) alloys. Philosophical Magazine Part B 54(2):L33–L37.  https://doi.org/10.1080/13642818608238999 CrossRefGoogle Scholar
  25. 25.
    Akbari R, Mirdamadi S, Khodabandeh A, Paidar M (2016) A study on mechanical and microstructural properties of dissimilar FSWed joints of AA5251–AA5083 plates. Int J Mater Res 107(8):752–761.  https://doi.org/10.3139/146.111400 CrossRefGoogle Scholar
  26. 26.
    Liu X, Liu H, Wang T, Wang X, Yang S (2018) Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces. Journal of Materials Science & Technology 34(1):102–111.  https://doi.org/10.1016/j.jmst.2017.11.015 CrossRefGoogle Scholar
  27. 27.
    Goebel J, Reimann M, Norman A, dos Santos JF (2017) Semi-stationary shoulder bobbin tool friction stir welding of AA2198-T851. J Mater Process Technol 245:37–45.  https://doi.org/10.1016/j.jmatprotec.2017.02.011 CrossRefGoogle Scholar
  28. 28.
    Cederqvist L, Björck M, Garpinger O (2013) Effects of advancing and retreating side alteration during power and temperature controlled FSW of copper canisters. In: Friction Stir Welding and Processing VII, TMS 2013 142nd Annual Meeting & Exhibition, San Antonio, March 3–7Google Scholar
  29. 29.
    Pourahmad P, Abbasi M (2013) Materials flow and phase transformation in friction stir welding of Al 6013/Mg. Trans Nonferrous Met Soc China 23(5):1253–1261.  https://doi.org/10.1016/S1003-6326(13)62590-X CrossRefGoogle Scholar
  30. 30.
    Ismail A, Awang M, Rojan MA, Samsudin SH (2016) The characteristic of temperature curves for friction stir welding of aluminum alloy 6063-T6 pipe during tool plunging stage. ARPN Journal of Engineering and Applied Sciences 11(1):277–280Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • V. Ebrahimzadeh
    • 1
  • M. Paidar
    • 2
  • M. A. Safarkhanian
    • 1
  • O. Oladimeji Ojo
    • 3
  1. 1.Department of Materials EngineeringMalek-e-Ashtar University of TechnologyTehranIran
  2. 2.Department of Materials Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Mechanical EngineeringThe Federal University of Technology AkureAkureNigeria

Personalised recommendations