Effect of workpiece geometry using circular scan patterns in sheet laser forming processes

  • Álvaro Navarrete
  • Diego Celentano


This research reports on the effect of workpiece geometry using circular scan patterns in low output power multi-pass laser forming processes applied to graphite coated AISI 304 stainless steel 0.6-mm-thick sheets. Curved plates, both circular and ring sectors, with multiple circular concentric laser path irradiation have been bent applying a fiber laser beam of diameter 1.2 mm, power 27 W power, and moving with a scanning velocity of 10 mm/s. Their behaviors are compared with those of rectangular plates linearly irradiated. In order to study the different variables that affect the bending plates with circular and linear patterns, finite element simulations of the forming processes have been carried out. Geometrical experimental measurements validate this formulation which, in turn, provides information about evolutions of the temperature, strain, and stress fields in the plate. A noticeable spring-back effect has been predicted for the curved sheets where, in addition, a direct relationship between equivalent plastic strain and bending angle could not be established. In such situations, the geometric shape of the plates was found to have a marked influence on the plate deformation.


Laser forming Circular scan patterns Numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The support provided by the National Council for Scientific and Technological Research CONICYT (FONDECYT Project No. 1130404) is gratefully acknowledged.


  1. 1.
    Edwardson SP (1999) Laser forming dish shapes—a 3D case study. Master Science (Engineering) Thesis, The University of LiverpoolGoogle Scholar
  2. 2.
    Vollerstsen F (1995) Applications of lasers for flexible shaping processes. Proceedings of the 12th International Congress (LASER’95) Meisenbach, pp 151–162Google Scholar
  3. 3.
    Cheng P, Fan Y, Zhang J, Yao YL, Mika DP, Zhang W, Graham M, Marte J, Jones M (2006) Laser forming of varying thickness plate-part I: process analysis. ASME J Manuf Sci Eng 128(3):634–641. CrossRefGoogle Scholar
  4. 4.
    Cheng P, Fan Y, Zhang J, Yao YL, Mika DP, Zhang W, Graham M, Marte J, Jones M (2006) Laser forming of varying thickness plate-part II: process synthesis. ASME J Manuf Sci Eng 128(3):642–650. CrossRefGoogle Scholar
  5. 5.
    Wu D, Zhang Q, Ma G, Guo Y, Guo D (2010) Laser bending of brittle materials. Opt Lasers Eng 48(4):405–410. CrossRefGoogle Scholar
  6. 6.
    Safari M, Farzin M, Ghaei A (2013) Introduction into the effects of process parameters on bending angle in the laser bending of tailor machined blank based on a statistical analysis. J Laser Appl 25:1–10CrossRefGoogle Scholar
  7. 7.
    Shen H, Vollertsen F (2009) Modelling of laser forming—a review. Comput Mater Sci 46(4):834–840. CrossRefGoogle Scholar
  8. 8.
    Dahotre N, Harimkar S (2008) Laser fabrication and machining of materials. Springer, New YorkGoogle Scholar
  9. 9.
    Paunoiu V, Squeo EA, Quadrini F, Gheorghies C, Nicoara D (2008) Laser bending of stainless steel sheet metals. Int J Mater Forum Supply 1(S1):1371–1374. CrossRefGoogle Scholar
  10. 10.
    Magee J, Watkins KG, Steen WM, Cooke RL, Sidhu J (1998) Development of an integrated laser forming demonstrator system for the aerospace industry. Proceedings of ICALEO’98, Section E, pp 141–150Google Scholar
  11. 11.
    Magee J, Watkins KG, Steen WM, Calder NJ, Sidhu J, Kirby J (1997) Laser forming of aerospace alloys. Proceedings of ICALEO’97, Section E, pp 156–165Google Scholar
  12. 12.
    Magee J, Watkins KG, Steen WM (1998) Advances in laser forming. J Laser Appl 10(6):235–246. CrossRefGoogle Scholar
  13. 13.
    Frackiewicz H (1996) High-technology metal forming. Ind Laser Rev. Penn Well Publishing Co:15–17Google Scholar
  14. 14.
    Maji K, Shukla R, Nath AK, Pratihar DK (2013) Finite element analysis and experimental investigations on laser bending of AISI304 stainless steel sheet. Procedia Eng 64:528–535. CrossRefGoogle Scholar
  15. 15.
    Geiger M, Vollertsen F (1993) The mechanism of laser forming. CIRP Ann 42(1):301–304. CrossRefGoogle Scholar
  16. 16.
    Shi Y, Yao Z, Shen H, Hu J (2006) Research on the mechanisms of laser forming for the metal plate. Int J Mach Tool Manu 46:689–1697CrossRefGoogle Scholar
  17. 17.
    Cook F, Jacobsen V, Celentano D, Ramos J (2015) Characterization of the absorptance of laser irradiated steel sheets. J Laser Appl 27(3):032006–1–8. CrossRefGoogle Scholar
  18. 18.
    Shen H, Shi Y, Yao Z (2006) Numerical simulation of laser forming of plates using two simultaneous scans. Comput Mater Sci 37(3):239–245. CrossRefGoogle Scholar
  19. 19.
    Hu Z, Labudovic M, Wang H, Kovacevic R (2001) Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. Int J Mach Tool Manu 41(4):589–607. CrossRefGoogle Scholar
  20. 20.
    Yanjin G, Sheng S, Guoqun Z, Yiguo L (2003) Finite element modeling of laser bending of pre-loaded sheet metals. J Mater Process Technol 142(2):400–407. CrossRefGoogle Scholar
  21. 21.
    Zhang L, Reutzel EW, Michaleris P (2004) Finite element modeling discretization requirements for the laser forming process. Int J Mech Sci 46(4):623–637. CrossRefMATHGoogle Scholar
  22. 22.
    Stevens V, Celentano D, Ramos-Grez J, Walczak M (2012) Experimental and numerical analysis of low output power laser bending of thin steel sheets. J Manuf Sci Eng 134(3):031010. CrossRefGoogle Scholar
  23. 23.
    Cook F, Celentano D, Ramos-Grez J (2016) Experimental-numerical methodology for the manufacturing of cranial prosthesis via laser forming. Int J Adv Manuf Technol 86(5-8):2187–2196. CrossRefGoogle Scholar
  24. 24.
    Vollertsen F. (1994) An analytical model for laser bending. Lasers Eng 2:261–276Google Scholar
  25. 25.
    Liu FR, Chan KC, Tang CY (2005) Theoretical analysis of deformation behavior of aluminum matrix composites in laser forming. Mater Sci Eng A 396(1-2):172–180. CrossRefGoogle Scholar
  26. 26.
    Mucha Z (2007) Deformations and stresses induced in materials by moving beam of CO2 laser. Proc SPIE 6598:65980M-1–65980M-9Google Scholar
  27. 27.
    Lambiase F (2012) An analytical model for evaluation of bending angle in laser forming of metal sheets. J Mater Eng Perform 21(10):2044–2052. CrossRefGoogle Scholar
  28. 28.
    Shichun W, Zhong J (2002) FEM simulation of the deformation field during the laser forming of sheet metal. J Mater Process Technol 121(2-3):269–272. CrossRefGoogle Scholar
  29. 29.
    Liu FR, Chan KC, Tang CY (2007) Numerical simulation of laser forming of aluminum matrix composites with different volume fractions of reinforcement. Mater Sci Eng A 458(1-2):48–57. CrossRefGoogle Scholar
  30. 30.
    Che Jamil MS, Sheikh MA, Li L (2011) A numerical study of the temperature gradient mechanism in laser forming using different laser beam geometries. Lasers Eng 22:413–428Google Scholar
  31. 31.
    Smith TM, Michaleris P, Reutzel EW, Hall B (2012) Finite element model of pulsed laser forming. Proceedings of LPM2012- the 13th International Symposium on Laser Precision MicrofabricationGoogle Scholar
  32. 32.
    Safari M (2014) Numerical investigation of the effect of process and sheet parameters on bending angle in the laser bending process. World J Mech 4(04):97–101. CrossRefGoogle Scholar
  33. 33.
    Magee J, Watkins KG, Steen WM, Calder N, Sidhu J, Kirby J (1997) Edge effects in laser forming. Laser Assist Net Shape Eng Proc LANE 2:399–408Google Scholar
  34. 34.
    Bao J, Yao YL (2001) Analysis and prediction of edge effects in laser bending. J Manuf Sci Eng 123(1):53–61. CrossRefGoogle Scholar
  35. 35.
    Shen H, Yao ZQ (2008) Analysis of varying velocity scanning schemes on bending angle in laser forming. International Workshop on Thermal Forming and Welding Distortion, pp 215–227Google Scholar
  36. 36.
    Cheng J, Yao YL (2001) Cooling effects in multiscan laser forming. J Manuf Process 3(1):60–72. CrossRefGoogle Scholar
  37. 37.
    Edwardson SP, Abed E, Bartkowiak K, Dearden G, Watkins KG (2006) Geometrical influences on multi-pass laser forming. J Phys D Appl Phys 39(2):382–389. CrossRefGoogle Scholar
  38. 38.
    Edwardson SP, Abed E, Carey C, Edwards KR, Dearden G, Watkins KG (2007) Factors influencing the bend per pass in multi-pass laser forming. Laser Assist Net Shape Eng Proc LANE 5:557–568Google Scholar
  39. 39.
    Shen H, Zhou J, Yao ZQ (2007) Study on overlapping of two sequential scans in laser forming. Proc Inst Mech Eng C J Mech Eng Sci (9):993–997Google Scholar
  40. 40.
    Liu J, Sun S, Guan Y, Ji Z (2010) Experimental study on negative laser bending process of steel foils. Opt Lasers Eng 48(1):83–88. CrossRefGoogle Scholar
  41. 41.
    Hoseinpour Gollo M, Moslemi Naeini H, Payganeh GH, Ding S, Mahdavian S.M (2012) Experimental analyses of bending angle by a pulsed Nd:YAG laser in sheet metal forming process. Sci Res Essays 7:279–287Google Scholar
  42. 42.
    Pence C, Ding H, Shen N, Ding H (2013) Experimental analysis of sheet metal micro-bending using a nanosecond-pulsed laser. Int J Adv Manuf Technol 69(1-4):319–327. CrossRefGoogle Scholar
  43. 43.
    Shen H, Ran M, Hu J, Yao Z (2014) An experimental investigation of underwater pulsed laser forming. Opt Lasers Eng 62:1–8. CrossRefGoogle Scholar
  44. 44.
    Chen D, Wu S, Li M (2004) Deformation behaviours of laser curve bending of sheet metals. J Mater Process Technol 148(1):30–34. CrossRefGoogle Scholar
  45. 45.
    Venkadeshwaran K, Das S, Misra D (2010) Finite element simulation of 3-D laser forming by discrete section circle line heating. Int J Eng Sci Technol 2:163–175CrossRefGoogle Scholar
  46. 46.
    Chakraborty S, Racherla V, Nath A (2012) Parametric study on bending and thickening in laser forming of a bowl shaped surface. Opt Lasers Eng 50(11):1548–1558. CrossRefGoogle Scholar
  47. 47.
    Gautam S, Singh S, DixiU (2015) Laser forming of mild steel sheets using different surface coatings. Lasers Based Manuf Top Min Metall Mater Eng.
  48. 48.
    Peng Z, Jingbo Y, Xiongfei Z (2009) Deformation behaviors of laser forming of ring sheet metals. Tsinghua Sci Technol 14:132–136CrossRefGoogle Scholar
  49. 49.
    Nadeem Q, Seong WJ, Na SJ (2012) Process designing for laser forming of circular sheet metal. Chin Opt Lett 10(2):021405–021407. CrossRefGoogle Scholar
  50. 50.
    Nadeem Q, Na SJ (2013) An approach to form the dome shape by 3D laser forming. Chin Opt Lett 11(2):021402–021405. CrossRefGoogle Scholar
  51. 51.
    Hennige T (2000) Development of irradiation strategies for 3D-laser forming. J Mater Process Technol 103(1):102–108. CrossRefGoogle Scholar
  52. 52.
    Nadeem Q, Na SJ (2011) Deformation behavior of laser bending of circular sheet metal. Chin Opt Lett 9(5):051402–051406. CrossRefGoogle Scholar
  53. 53.
    Berretta JR, de Rossi W, Martins das Neves MD, Alves de Almeida I, Dias Vieira Junior N (2007) Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steel. Opt Lasers Eng 45(9):960–966. CrossRefGoogle Scholar
  54. 54.
    Celentano D (2002) Thermomechanical analysis of the tensile test: simulation and experimental validation. Struct Eng Mech 13(6):591–614. CrossRefGoogle Scholar
  55. 55.
    Bao J, Yao YL (2001) Analysis and prediction of edge effects in laser bending. ASME J Manuf Sci Eng 123:53–61CrossRefGoogle Scholar
  56. 56.
    Jha GC, Nath AK, Roy SK (2008) Study of edge effect and multi-curvature in laser bending of AISI 304 stainless steel. J Mater Process Technol 197(1-3):434–438. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Metallurgical Engineering, Research Center for Nanotechnology and Advanced Materials (CIEN-UC)Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations