Skip to main content
Log in

Effect of workpiece geometry using circular scan patterns in sheet laser forming processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This research reports on the effect of workpiece geometry using circular scan patterns in low output power multi-pass laser forming processes applied to graphite coated AISI 304 stainless steel 0.6-mm-thick sheets. Curved plates, both circular and ring sectors, with multiple circular concentric laser path irradiation have been bent applying a fiber laser beam of diameter 1.2 mm, power 27 W power, and moving with a scanning velocity of 10 mm/s. Their behaviors are compared with those of rectangular plates linearly irradiated. In order to study the different variables that affect the bending plates with circular and linear patterns, finite element simulations of the forming processes have been carried out. Geometrical experimental measurements validate this formulation which, in turn, provides information about evolutions of the temperature, strain, and stress fields in the plate. A noticeable spring-back effect has been predicted for the curved sheets where, in addition, a direct relationship between equivalent plastic strain and bending angle could not be established. In such situations, the geometric shape of the plates was found to have a marked influence on the plate deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwardson SP (1999) Laser forming dish shapes—a 3D case study. Master Science (Engineering) Thesis, The University of Liverpool

  2. Vollerstsen F (1995) Applications of lasers for flexible shaping processes. Proceedings of the 12th International Congress (LASER’95) Meisenbach, pp 151–162

  3. Cheng P, Fan Y, Zhang J, Yao YL, Mika DP, Zhang W, Graham M, Marte J, Jones M (2006) Laser forming of varying thickness plate-part I: process analysis. ASME J Manuf Sci Eng 128(3):634–641. https://doi.org/10.1115/1.2172280

    Article  Google Scholar 

  4. Cheng P, Fan Y, Zhang J, Yao YL, Mika DP, Zhang W, Graham M, Marte J, Jones M (2006) Laser forming of varying thickness plate-part II: process synthesis. ASME J Manuf Sci Eng 128(3):642–650. https://doi.org/10.1115/1.2162912

    Article  Google Scholar 

  5. Wu D, Zhang Q, Ma G, Guo Y, Guo D (2010) Laser bending of brittle materials. Opt Lasers Eng 48(4):405–410. https://doi.org/10.1016/j.optlaseng.2009.09.009

    Article  Google Scholar 

  6. Safari M, Farzin M, Ghaei A (2013) Introduction into the effects of process parameters on bending angle in the laser bending of tailor machined blank based on a statistical analysis. J Laser Appl 25:1–10

    Article  Google Scholar 

  7. Shen H, Vollertsen F (2009) Modelling of laser forming—a review. Comput Mater Sci 46(4):834–840. https://doi.org/10.1016/j.commatsci.2009.04.022

    Article  Google Scholar 

  8. Dahotre N, Harimkar S (2008) Laser fabrication and machining of materials. Springer, New York

    Google Scholar 

  9. Paunoiu V, Squeo EA, Quadrini F, Gheorghies C, Nicoara D (2008) Laser bending of stainless steel sheet metals. Int J Mater Forum Supply 1(S1):1371–1374. https://doi.org/10.1007/s12289-008-0119-8

    Article  Google Scholar 

  10. Magee J, Watkins KG, Steen WM, Cooke RL, Sidhu J (1998) Development of an integrated laser forming demonstrator system for the aerospace industry. Proceedings of ICALEO’98, Section E, pp 141–150

  11. Magee J, Watkins KG, Steen WM, Calder NJ, Sidhu J, Kirby J (1997) Laser forming of aerospace alloys. Proceedings of ICALEO’97, Section E, pp 156–165

  12. Magee J, Watkins KG, Steen WM (1998) Advances in laser forming. J Laser Appl 10(6):235–246. https://doi.org/10.2351/1.521859

    Article  Google Scholar 

  13. Frackiewicz H (1996) High-technology metal forming. Ind Laser Rev. Penn Well Publishing Co:15–17

  14. Maji K, Shukla R, Nath AK, Pratihar DK (2013) Finite element analysis and experimental investigations on laser bending of AISI304 stainless steel sheet. Procedia Eng 64:528–535. https://doi.org/10.1016/j.proeng.2013.09.127

    Article  Google Scholar 

  15. Geiger M, Vollertsen F (1993) The mechanism of laser forming. CIRP Ann 42(1):301–304. https://doi.org/10.1016/S0007-8506(07)62448-2

    Article  Google Scholar 

  16. Shi Y, Yao Z, Shen H, Hu J (2006) Research on the mechanisms of laser forming for the metal plate. Int J Mach Tool Manu 46:689–1697

    Article  Google Scholar 

  17. Cook F, Jacobsen V, Celentano D, Ramos J (2015) Characterization of the absorptance of laser irradiated steel sheets. J Laser Appl 27(3):032006–1–8. https://doi.org/10.2351/1.4918975

    Article  Google Scholar 

  18. Shen H, Shi Y, Yao Z (2006) Numerical simulation of laser forming of plates using two simultaneous scans. Comput Mater Sci 37(3):239–245. https://doi.org/10.1016/j.commatsci.2005.06.012

    Article  Google Scholar 

  19. Hu Z, Labudovic M, Wang H, Kovacevic R (2001) Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. Int J Mach Tool Manu 41(4):589–607. https://doi.org/10.1016/S0890-6955(00)00058-4

    Article  Google Scholar 

  20. Yanjin G, Sheng S, Guoqun Z, Yiguo L (2003) Finite element modeling of laser bending of pre-loaded sheet metals. J Mater Process Technol 142(2):400–407. https://doi.org/10.1016/S0924-0136(03)00603-4

    Article  Google Scholar 

  21. Zhang L, Reutzel EW, Michaleris P (2004) Finite element modeling discretization requirements for the laser forming process. Int J Mech Sci 46(4):623–637. https://doi.org/10.1016/j.ijmecsci.2004.04.001

    Article  MATH  Google Scholar 

  22. Stevens V, Celentano D, Ramos-Grez J, Walczak M (2012) Experimental and numerical analysis of low output power laser bending of thin steel sheets. J Manuf Sci Eng 134(3):031010. https://doi.org/10.1115/1.4005807

    Article  Google Scholar 

  23. Cook F, Celentano D, Ramos-Grez J (2016) Experimental-numerical methodology for the manufacturing of cranial prosthesis via laser forming. Int J Adv Manuf Technol 86(5-8):2187–2196. https://doi.org/10.1007/s00170-015-8316-3

    Article  Google Scholar 

  24. Vollertsen F. (1994) An analytical model for laser bending. Lasers Eng 2:261–276

    Google Scholar 

  25. Liu FR, Chan KC, Tang CY (2005) Theoretical analysis of deformation behavior of aluminum matrix composites in laser forming. Mater Sci Eng A 396(1-2):172–180. https://doi.org/10.1016/j.msea.2005.01.036

    Article  Google Scholar 

  26. Mucha Z (2007) Deformations and stresses induced in materials by moving beam of CO2 laser. Proc SPIE 6598:65980M-1–65980M-9

    Google Scholar 

  27. Lambiase F (2012) An analytical model for evaluation of bending angle in laser forming of metal sheets. J Mater Eng Perform 21(10):2044–2052. https://doi.org/10.1007/s11665-012-0163-x

    Article  Google Scholar 

  28. Shichun W, Zhong J (2002) FEM simulation of the deformation field during the laser forming of sheet metal. J Mater Process Technol 121(2-3):269–272. https://doi.org/10.1016/S0924-0136(01)01241-9

    Article  Google Scholar 

  29. Liu FR, Chan KC, Tang CY (2007) Numerical simulation of laser forming of aluminum matrix composites with different volume fractions of reinforcement. Mater Sci Eng A 458(1-2):48–57. https://doi.org/10.1016/j.msea.2006.12.110

    Article  Google Scholar 

  30. Che Jamil MS, Sheikh MA, Li L (2011) A numerical study of the temperature gradient mechanism in laser forming using different laser beam geometries. Lasers Eng 22:413–428

    Google Scholar 

  31. Smith TM, Michaleris P, Reutzel EW, Hall B (2012) Finite element model of pulsed laser forming. Proceedings of LPM2012- the 13th International Symposium on Laser Precision Microfabrication

  32. Safari M (2014) Numerical investigation of the effect of process and sheet parameters on bending angle in the laser bending process. World J Mech 4(04):97–101. https://doi.org/10.4236/wjm.2014.44011

    Article  Google Scholar 

  33. Magee J, Watkins KG, Steen WM, Calder N, Sidhu J, Kirby J (1997) Edge effects in laser forming. Laser Assist Net Shape Eng Proc LANE 2:399–408

    Google Scholar 

  34. Bao J, Yao YL (2001) Analysis and prediction of edge effects in laser bending. J Manuf Sci Eng 123(1):53–61. https://doi.org/10.1115/1.1345729

    Article  Google Scholar 

  35. Shen H, Yao ZQ (2008) Analysis of varying velocity scanning schemes on bending angle in laser forming. International Workshop on Thermal Forming and Welding Distortion, pp 215–227

  36. Cheng J, Yao YL (2001) Cooling effects in multiscan laser forming. J Manuf Process 3(1):60–72. https://doi.org/10.1016/S1526-6125(01)70034-5

    Article  Google Scholar 

  37. Edwardson SP, Abed E, Bartkowiak K, Dearden G, Watkins KG (2006) Geometrical influences on multi-pass laser forming. J Phys D Appl Phys 39(2):382–389. https://doi.org/10.1088/0022-3727/39/2/021

    Article  Google Scholar 

  38. Edwardson SP, Abed E, Carey C, Edwards KR, Dearden G, Watkins KG (2007) Factors influencing the bend per pass in multi-pass laser forming. Laser Assist Net Shape Eng Proc LANE 5:557–568

    Google Scholar 

  39. Shen H, Zhou J, Yao ZQ (2007) Study on overlapping of two sequential scans in laser forming. Proc Inst Mech Eng C J Mech Eng Sci (9):993–997

  40. Liu J, Sun S, Guan Y, Ji Z (2010) Experimental study on negative laser bending process of steel foils. Opt Lasers Eng 48(1):83–88. https://doi.org/10.1016/j.optlaseng.2009.07.019

    Article  Google Scholar 

  41. Hoseinpour Gollo M, Moslemi Naeini H, Payganeh GH, Ding S, Mahdavian S.M (2012) Experimental analyses of bending angle by a pulsed Nd:YAG laser in sheet metal forming process. Sci Res Essays 7:279–287

    Google Scholar 

  42. Pence C, Ding H, Shen N, Ding H (2013) Experimental analysis of sheet metal micro-bending using a nanosecond-pulsed laser. Int J Adv Manuf Technol 69(1-4):319–327. https://doi.org/10.1007/s00170-013-5032-8

    Article  Google Scholar 

  43. Shen H, Ran M, Hu J, Yao Z (2014) An experimental investigation of underwater pulsed laser forming. Opt Lasers Eng 62:1–8. https://doi.org/10.1016/j.optlaseng.2014.04.011

    Article  Google Scholar 

  44. Chen D, Wu S, Li M (2004) Deformation behaviours of laser curve bending of sheet metals. J Mater Process Technol 148(1):30–34. https://doi.org/10.1016/j.jmatprotec.2003.12.024

    Article  Google Scholar 

  45. Venkadeshwaran K, Das S, Misra D (2010) Finite element simulation of 3-D laser forming by discrete section circle line heating. Int J Eng Sci Technol 2:163–175

    Article  Google Scholar 

  46. Chakraborty S, Racherla V, Nath A (2012) Parametric study on bending and thickening in laser forming of a bowl shaped surface. Opt Lasers Eng 50(11):1548–1558. https://doi.org/10.1016/j.optlaseng.2012.06.003

    Article  Google Scholar 

  47. Gautam S, Singh S, DixiU (2015) Laser forming of mild steel sheets using different surface coatings. Lasers Based Manuf Top Min Metall Mater Eng. https://doi.org/10.1007/978-81-322-2352-8_2

  48. Peng Z, Jingbo Y, Xiongfei Z (2009) Deformation behaviors of laser forming of ring sheet metals. Tsinghua Sci Technol 14:132–136

    Article  Google Scholar 

  49. Nadeem Q, Seong WJ, Na SJ (2012) Process designing for laser forming of circular sheet metal. Chin Opt Lett 10(2):021405–021407. https://doi.org/10.3788/COL201210.021405

    Article  Google Scholar 

  50. Nadeem Q, Na SJ (2013) An approach to form the dome shape by 3D laser forming. Chin Opt Lett 11(2):021402–021405. https://doi.org/10.3788/COL201311.021402

    Article  Google Scholar 

  51. Hennige T (2000) Development of irradiation strategies for 3D-laser forming. J Mater Process Technol 103(1):102–108. https://doi.org/10.1016/S0924-0136(00)00392-7

    Article  Google Scholar 

  52. Nadeem Q, Na SJ (2011) Deformation behavior of laser bending of circular sheet metal. Chin Opt Lett 9(5):051402–051406. https://doi.org/10.3788/COL201109.051402

    Article  Google Scholar 

  53. Berretta JR, de Rossi W, Martins das Neves MD, Alves de Almeida I, Dias Vieira Junior N (2007) Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steel. Opt Lasers Eng 45(9):960–966. https://doi.org/10.1016/j.optlaseng.2007.02.001

    Article  Google Scholar 

  54. Celentano D (2002) Thermomechanical analysis of the tensile test: simulation and experimental validation. Struct Eng Mech 13(6):591–614. https://doi.org/10.12989/sem.2002.13.6.591

    Article  Google Scholar 

  55. Bao J, Yao YL (2001) Analysis and prediction of edge effects in laser bending. ASME J Manuf Sci Eng 123:53–61

    Article  Google Scholar 

  56. Jha GC, Nath AK, Roy SK (2008) Study of edge effect and multi-curvature in laser bending of AISI 304 stainless steel. J Mater Process Technol 197(1-3):434–438. https://doi.org/10.1016/j.jmatprotec.2007.06.040

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by the National Council for Scientific and Technological Research CONICYT (FONDECYT Project No. 1130404) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Celentano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete, Á., Celentano, D. Effect of workpiece geometry using circular scan patterns in sheet laser forming processes. Int J Adv Manuf Technol 96, 1835–1846 (2018). https://doi.org/10.1007/s00170-018-1628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1628-3

Keywords

Navigation