Electric discharge machining of titanium and its alloys: review

  • Jaber E. Abu Qudeiri
  • Abdel-Hamed I. Mourad
  • Aiman Ziout
  • Mustufa Haider Abidi
  • Ahmed Elkaseer


Electric discharge machining (EDM) is one of the leading edge machining processes successfully used to machine hard-to-cut materials in wide range of industrial applications. It is a non-conventional material removal process that can machine a complex shapes and geometries with high accuracy. The principle of the EDM technique is to use thermoelectric energy to erode conductive components by rapidly recurring sparks between the non-contacted electrode and workpiece. To improve EDM performance, the machine’s operating parameters need to be optimized. Studies related to the EDM have shown that the appropriate selection of the process, material, and operating parameters had considerably improved the process performance. This paper made a comprehensive review about the research studies on the EDM of different grades of titanium and its alloys. This review presents the experimental and theoretical studies on EDM that aimed to improve the process performance, including material removal rate, surface quality, and tool wear rate, among others. This paper also examines evaluation models and techniques used to determine the EDM process conditions. Moreover, the paper discusses the recent developments in EDM and outlines the progression for future research.


EDM Titanium Machining Process parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Authors want to thank United Arab Emirates University, Al Ain, UAE for funding this research through Research Start-up 2015 fund, Grant number 31N233.


  1. 1.
    Benes J Cutting Difficult-to-Machine Materials. <>, Jan 24, 2007. (last accessed on March 6,2016)
  2. 2.
    Komanduri R, Hou Z-B (2002) On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4V). Metall Mater Trans A 33(9):2995–3010. CrossRefGoogle Scholar
  3. 3.
    Pérez J, Llorente J, Sanchez J (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100(1):1–11Google Scholar
  4. 4.
    Hewidy M, El-Taweel T, El-Safty M (2005) Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol 169(2):328–336. CrossRefGoogle Scholar
  5. 5.
    Yu Z, Jun T, Masanori K (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149(1–3):353–357. CrossRefGoogle Scholar
  6. 6.
    Chiang K-T, Chang F-P (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J Mater Process Technol 180(1–3):96–101. CrossRefGoogle Scholar
  7. 7.
    Lee S, Li X (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J Mater Process Technol 115(3):344–358. CrossRefGoogle Scholar
  8. 8.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44(12–13):1247–1259. CrossRefGoogle Scholar
  9. 9.
    Mohd Abbas N, Solomon DG, Fuad Bahari M (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228. CrossRefGoogle Scholar
  10. 10.
    Singh S, Maheshwari S, Pandey P (2004) Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J Mater Process Technol 149(1):272–277. CrossRefGoogle Scholar
  11. 11.
    Tzeng Y-f, Chen F-c (2003) A simple approach for robust design of high-speed electrical-discharge machining technology. Int J Mach Tools Manuf 43(3):217–227. CrossRefGoogle Scholar
  12. 12.
    Hsieh M-F, Tung CJ, Yao WS, Wu MC, Liao YS (2007) Servo design of a vertical axis drive using dual linear motors for high speed electric discharge machining. Int J Mach Tools Manuf 47(3–4):546–554. CrossRefGoogle Scholar
  13. 13.
    Lim HS, Wong YS, Rahman M, Edwin Lee MK (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140(1–3):318–325. CrossRefGoogle Scholar
  14. 14.
    Yan BH, Huang FY, Chow HM, Tsai JY (1999) Micro-hole machining of carbide by electric discharge machining. J Mater Process Technol 87(1–3):139–145. CrossRefGoogle Scholar
  15. 15.
    McCown B et al (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9(10):590–594. CrossRefGoogle Scholar
  16. 16.
    Kansal HK, Singh S, Kumar P (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184(1–3):32–41. CrossRefGoogle Scholar
  17. 17.
    Gostimirovic M et al (2012) Effect of electrical pulse parameters on the machining performance in EDM. Indian J Eng Mater Sci 18:411–415Google Scholar
  18. 18.
    Gao C, Liu Z (2003) A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J Mater Process Technol 139(1):226–228. CrossRefGoogle Scholar
  19. 19.
    Dauw DF, Snoeys R, Dekeyser W (1983) Advanced pulse discriminating system for EDM process analysis and control. CIRP Ann Manuf Technol 32(2):541–549. CrossRefGoogle Scholar
  20. 20.
    Marafona J, Chousal J (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602. CrossRefGoogle Scholar
  21. 21.
    Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300. CrossRefGoogle Scholar
  22. 22.
    Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7):1214–1228. CrossRefGoogle Scholar
  23. 23.
    Cui J, Chu Z (2016) Composite motion design procedure for vibration assisted small-hole EDM using one voice coil motor. Shock Vib 2016:7Google Scholar
  24. 24.
    Bing S, Masayuki S, Clements JS (1999) Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. J Phys D Appl Phys 32(15):1908CrossRefGoogle Scholar
  25. 25.
    Anpilov AM, Barkhudarov EM, Bark YB, Zadiraka YV, Christofi M, Kozlov YN, Kossyi IA, Kop'ev VA, Silakov VP, Taktakishvili MI, Temchin SM (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D Appl Phys 34(6):993–999. CrossRefGoogle Scholar
  26. 26.
    Ikonomou MG, Blades AT, Kebarle P (1991) Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas. J Am Soc Mass Spectrom 2(6):497–505. CrossRefGoogle Scholar
  27. 27.
    Grigoryev EG, Olevsky EA (2012) Thermal processes during high-voltage electric discharge consolidation of powder materials. Scr Mater 66(9):662–665. CrossRefGoogle Scholar
  28. 28.
    Lajis MA, Radzi H, Amin A (2009) The implementation of Taguchi method on EDM process of tungsten carbide. Eur J Sci Res 26(4):609–617Google Scholar
  29. 29.
    Singh H, Garg R (2009) Effects of process parameters on material removal rate in WEDM. J Achiev Mater Manuf Eng 32(1):70–74Google Scholar
  30. 30.
    Lin et al (2000) Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM. J Mater Process Technol 104(3):171–177MathSciNetCrossRefGoogle Scholar
  31. 31.
    Liu Y, Guo Y, Liu J (1997) Electric discharge milling of polycrystalline diamond. Proc Inst Mech Eng B J Eng Manuf 211(8):643–647. CrossRefGoogle Scholar
  32. 32.
    Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38(1–2):74–84. CrossRefGoogle Scholar
  33. 33.
    Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tools Manuf 43(13):1301–1310. CrossRefGoogle Scholar
  34. 34.
    Lin J et al (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Technol 102(1):48–55. CrossRefGoogle Scholar
  35. 35.
    Ramakrishnan R, Karunamoorthy L (2008) Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J Mater Process Technol 207(1–3):343–349. CrossRefGoogle Scholar
  36. 36.
    Lin C, Lin J, Ko T (2002) Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int J Adv Manuf Technol 19(4):271–277. CrossRefGoogle Scholar
  37. 37.
    Kansal H, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169(3):427–436. CrossRefGoogle Scholar
  38. 38.
    Kumar S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining: a review. J Mater Process Technol 209(8):3675–3687. CrossRefGoogle Scholar
  39. 39.
    Jahan M, Rahman M, Wong Y (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tools Manuf 51(12):837–858. CrossRefGoogle Scholar
  40. 40.
    Rajurkar KP, Wang WM (1997) Improvement of EDM performance with advanced monitoring and control systems. J Manuf Sci Eng 119(4B):770–775. CrossRefGoogle Scholar
  41. 41.
    Mohan B, Rajadurai A, Satyanarayana K (2002) Effect of SiC and rotation of electrode on electric discharge machining of Al–SiC composite. J Mater Process Technol 124(3):297–304. CrossRefGoogle Scholar
  42. 42.
    Mohan B, Rajadurai A, Satyanarayana K (2004) Electric discharge machining of al–SiC metal matrix composites using rotary tube electrode. J Mater Process Technol 153:978–985CrossRefGoogle Scholar
  43. 43.
    Szafarczyk M (2012) Automatic supervision in manufacturing. Springer Science & Business Media, BerlinGoogle Scholar
  44. 44.
    Dimov S, Menz W (2005) 4M 2005-First International Conference on Multi-Material Micro Manufacture. Elsevier, AmsterdamGoogle Scholar
  45. 45.
    Tsai Y, Tseng C, Chang C (2008) Development of a combined machining method using electrorheological fluids for EDM. J Mater Process Technol 201(1):565–569. CrossRefGoogle Scholar
  46. 46.
    Valaki JB, Rathod PP (2015) Assessment of operational feasibility of waste vegetable oil based biodielectric fluid for sustainable electric discharge machining (EDM). Int J Adv Manuf Technol.
  47. 47.
    Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X, Zheng C, Ji R (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25. CrossRefGoogle Scholar
  48. 48.
    Fujiki M, Ni J, Shih AJ (2009) Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling. Int J Mach Tools Manuf 49(10):749–758. CrossRefGoogle Scholar
  49. 49.
    Lonardo P, Bruzzone A (1999) Effect of flushing and electrode material on die sinking EDM. CIRP Ann-Manuf Technol 48(1):123–126. CrossRefGoogle Scholar
  50. 50.
    Wong Y, Lim L, Lee L (1995) Effects of flushing on electro-discharge machined surfaces. J Mater Process Technol 48(1):299–305. CrossRefGoogle Scholar
  51. 51.
    Anonymous (1982) Dielectric fluids for electro dischargemachining. British Petroleum Company, UKGoogle Scholar
  52. 52.
    Guu Y, Hocheng H (2001) Effects of workpiece rotation on machinability during electrical-discharge machining. Mater Manuf Process 16(1):91–101. CrossRefGoogle Scholar
  53. 53.
    Soni J, Chakraverti G (1994) Machining characteristics of titanium with rotary electro-discharge machining. Wear 171(1):51–58. CrossRefGoogle Scholar
  54. 54.
    Yan B et al (2000) Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. Int J Adv Manuf Technol 16(5):322–333. CrossRefGoogle Scholar
  55. 55.
    Kagaya K, Ōishi Y, Yada K (1986) Micro-electrodischarge machining using water as a working fluid—I: micro-hole drilling. Precis Eng 8(3):157–162. CrossRefGoogle Scholar
  56. 56.
    Sato T, Mizutani T, Yonemochi K, Kawata K (1986) The development of an electrodischarge machine for micro-hole boring. Precis Eng 8(3):163–168. CrossRefGoogle Scholar
  57. 57.
    Pandit S, Mueller T (1987) Verification of on-line computer control of EDM by data dependent systems. J Eng Ind 109(2):117–121. CrossRefGoogle Scholar
  58. 58.
    Su J, Kao J, Tarng Y (2004) Optimisation of the electrical discharge machining process using a GA-based neural network. Int J Adv Manuf Technol 24(1–2):81–90Google Scholar
  59. 59.
    Marafona J, Wykes C (2000) A new method of optimising material removal rate using EDM with copper–tungsten electrodes. Int J Mach Tools Manuf 40(2):153–164. CrossRefGoogle Scholar
  60. 60.
    Soni J, Chakraverti G (1996) Experimental investigation on migration of material during EDM of die steel (T215 Cr12). J Mater Process Technol 56(1):439–451. CrossRefGoogle Scholar
  61. 61.
    Erden A (1983) Effect of materials on the mechanism of electric discharge machining (EDM). J Eng Mater Technol 105(2):132–138. CrossRefGoogle Scholar
  62. 62.
    Kruth J-P, Stevens L, Froyen L, Lauwers B (1995) Study of the white layer of a surface machined by die-sinking electro-discharge machining. CIRP Ann-Manuf Technol 44(1):169–172. CrossRefGoogle Scholar
  63. 63.
    Saito K, Kishinami T, Konno H, Sato M, Takeyama H (1986) Development of numerical contouring control electric discharge machining (NCC-EDM). CIRP Ann-Manuf Technol 35(1):117–120. CrossRefGoogle Scholar
  64. 64.
    Kaneko T, Tsuchiya M (1984) Three dimensionally controlled EDM using cylindrical electrode. J Jpn Soc Electr Machining Eng 18(35):1–4CrossRefGoogle Scholar
  65. 65.
    Mohri N, Suzuki M, Furuya M, Saito N, Kobayashi A (1995) Electrode wear process in electrical discharge machinings. CIRP Ann-Manuf Technol 44(1):165–168. CrossRefGoogle Scholar
  66. 66.
    Staelens F, Kruth J-P (1989) A computer integrated machining strategy for planetary EDM. CIRP Ann-Manuf Technolo 38(1):187–190. CrossRefGoogle Scholar
  67. 67.
    Schumacher BM (1983) EDM technology for precision work pieces with excellent surface quality. Proceedings of the ISEM–7, 124–135Google Scholar
  68. 68.
    Grote K-H, Antonsson EK (2009) Springer handbook of mechanical engineering. Vol. 10. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  69. 69.
    Amorim FL, Weingaertner WL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Braz Soc Mech Sci Eng 29(4):366–371. CrossRefGoogle Scholar
  70. 70.
    Shabgard M et al (2013) Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes. J Manuf Syst 32(1):32–39. CrossRefGoogle Scholar
  71. 71.
    Nourbakhsh F (2012) Machining stability of wire EDM of titanium industrial and management systems engineering -- dissertations and student research.
  72. 72.
    Zhao W, Meng Q, Wang Z (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129(1):30–33. CrossRefGoogle Scholar
  73. 73.
    Kunieda M, Adachi Y, Yoshida M (2000) Study on process reaction force generated by discharge in EDM. Proc MMSS 2000:313–324Google Scholar
  74. 74.
    Kunleda M, Miyoshi Y, Takaya T, Nakajima N, ZhanBo Y, Yoshida M (2003) High speed 3D milling by dry EDM. CIRP Ann-Manuf Technol 52(1):147–150. CrossRefGoogle Scholar
  75. 75.
    Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Ann-Manuf Technol 60(1):239–242. CrossRefGoogle Scholar
  76. 76.
    Yu Z et al (2005) Feasibility of 3-D surface machining by dry EDM. Int J Elec Mach 10:15–20Google Scholar
  77. 77.
    Kunieda M, Takaya T, Nakano S (2004) Improvement of dry EDM characteristics using piezoelectric actuator. CIRP Ann-Manuf Technol 53(1):183–186. CrossRefGoogle Scholar
  78. 78.
    Anonymous (2000) Titanium: a technical guide. ASM International, 2nd edn (#06112G). Last accessed on Jan. 14, 2018
  79. 79.
    Anonymous (2000) Titanium alloy guide. Last accessed on May 16, 2016
  80. 80.
    Mower TM (2014) Degradation of titanium 6Al–4V fatigue strength due to electrical discharge machining. Int J Fatigue 64:84–96. CrossRefGoogle Scholar
  81. 81.
    Porwal RK, Yadava V, Ramkumar J (2014) Modelling and multi-response optimization of hole sinking electrical discharge micromachining of titanium alloy thin sheet. J Mech Sci Technol 28(2):653–661. CrossRefGoogle Scholar
  82. 82.
    Stráský J, Havlíková J, Bačáková L, Harcuba P, Mhaede M, Janeček M (2013) Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Appl Surf Sci 281:73–78. CrossRefGoogle Scholar
  83. 83.
    Klocke F, Zeis M, Klink A, Veselovac D (2012) Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium-and nickel-based blisks. Procedia CIRP 2:98–101. CrossRefGoogle Scholar
  84. 84.
    Gu L, Li L, Zhao W, Rajurkar KP (2012) Electrical discharge machining of Ti6Al4V with a bundled electrode. Int J Mach Tools Manuf 53(1):100–106. CrossRefGoogle Scholar
  85. 85.
    Harcuba P, Bačáková L, Stráský J, Bačáková M, Novotná K, Janeček M (2012) Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J Mech Behav Biomed Mater 7:96–105. CrossRefGoogle Scholar
  86. 86.
    Rangajanardhaa G, Rao S (2009) Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J Mater Process Technol 209(3):1512–1520CrossRefGoogle Scholar
  87. 87.
    Fonda P, Wang Z, Yamazaki K, Akutsu Y (2008) A fundamental study on Ti–6Al–4V's thermal and electrical properties and their relation to EDM productivity. J Mater Process Technol 202(1):583–589. CrossRefGoogle Scholar
  88. 88.
    Hasçalık A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl Surf Sci 253(22):9007–9016. CrossRefGoogle Scholar
  89. 89.
    Wang AC, Yan BH, Li XT, Huang FY (2002) Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. Int J Mach Tools Manuf 42(8):915–923. CrossRefGoogle Scholar
  90. 90.
    Chen S et al (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V. J Mater Process Technol 87(1):107–111. MathSciNetCrossRefGoogle Scholar
  91. 91.
    Soni J (1994) Microanalysis of debris formed during rotary EDM of titanium alloy (Ti 6A1 4V) and die steel (T 215 Cr12). Wear 177(1):71–79. CrossRefGoogle Scholar
  92. 92.
    Sivakumar K, Gandhinathan R (2013) Establishing optimum process parameters for machining titanium alloys (Ti6Al4V) in spark electric discharge machining. Int J Eng Adv Technol (IJEAT) 2:201–204Google Scholar
  93. 93.
    Shen Y et al (2014) Determining the energy distribution during electric discharge machining of Ti–6Al–4V. Int J Adv Manuf Technol 70(1–4):11–17Google Scholar
  94. 94.
    Kumar S, Batish A, Singh R, Singh TP (2014) A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. J Mech Sci Technol 28(7):2831–2844. CrossRefGoogle Scholar
  95. 95.
    Izman S, et al (2012) Effects of adding multiwalled carbon nanotube into dielectric when EDMing titanium alloy. in Advanced Materials Research. Trans Tech PublGoogle Scholar
  96. 96.
    Santos I, Polli ML, Daniel H (2015) Influence of input parameters on the electrical discharge machining of titanium alloy (TI-6AL-4V). Int J Manuf Res 10(3):286–298. CrossRefGoogle Scholar
  97. 97.
    Kuttuboina MK et al (2012) Effect of process parameters in electric discharge machining of Ti-6Al–4V alloy by three different tool electrode materials. Adv Mater Res 488-489:876–880CrossRefGoogle Scholar
  98. 98.
    Thesiya et al (2014) Heat affected zone and recast layer of Ti-6Al-4V alloy in the EDM process through scanning electron microscopy (SEM). J Manuf Technol Res 6(1/2):41Google Scholar
  99. 99.
    Uthirapathi A, Singaravelu DL (2013) Effect of rotating tool electrode on machining of titanium alloy using electric discharge machining. Adv Mater Res 651:448–452CrossRefGoogle Scholar
  100. 100.
    Yadav et al (2015) Experimental investigation on electrical discharge drilling of Ti-6Al-4V alloy. Mach Sci Technol 19(4):515–535MathSciNetCrossRefGoogle Scholar
  101. 101.
    Klocke F, Welling D, Dieckmann J (2011) Comparison of grinding and Wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components. Procedia Eng 19:184–189. CrossRefGoogle Scholar
  102. 102.
    Aspinwall D et al (2008) Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP Ann-Manuf Technol 57(1):187–190. CrossRefGoogle Scholar
  103. 103.
    Nourbakhsh F, Rajurkar KP, Malshe AP, Cao J (2013) Wire electro-discharge machining of titanium alloy. Procedia CIRP 5:13–18. CrossRefGoogle Scholar
  104. 104.
    Kuriakose S, Shunmugam M (2004) Characteristics of wire-electro discharge machined Ti6Al4V surface. Mater Lett 58(17):2231–2237. CrossRefGoogle Scholar
  105. 105.
    Alias A, Abdullah B, Abbas NM (2012) WEDM: influence of machine feed rate in machining titanium Ti-6Al-4V using brass wire and constant current (4A). Procedia Eng 41:1812–1817. CrossRefGoogle Scholar
  106. 106.
    Muthu KV, Suresh BA, Suresh BA, Venkatasamy R, Raajenthiren M (2011) Process optimization of wire-EDM parameters by grey relational analysis based Taguchi method, vol 3. BITS, Pilani, pp 1–11Google Scholar
  107. 107.
    Ali MAM, Izamshah R, Hussein NIS, Kasim MS, Sulaiman MA, Salleh MR, Mohamad E, Subramonian S, Liew PJ, Abdullah Z (2014) Performance of wire-EDM parameters on machining characteristics of titanium alloy (Ti6Al4V) using Taguchi method. In: Malaysia University Conference Engineering Technology 2015, Melaka 10–11 November 2014Google Scholar
  108. 108.
    Lee H et al (2004) Electrical discharge surface alloying. J Mater Process Technol 149(1):334–340. CrossRefGoogle Scholar
  109. 109.
    Xie B-c et al (2011) Numerical simulation of titanium alloy machining in electric discharge machining process. Trans Nonferrous Metals Soc China 21:s434–s439. CrossRefGoogle Scholar
  110. 110.
    Chow H et al (1999) Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE). J Mater Process Technol 91(1):161–166. MathSciNetCrossRefGoogle Scholar
  111. 111.
    Khan MAR, Rahman M, Kadirgama K (2014) Neural network modeling and analysis for surface characteristics in electrical discharge machining. Procedia Eng 90:631–636. CrossRefGoogle Scholar
  112. 112.
    Qin G et al (2003) Wire electric discharge machining induced titanium hydride in Ti–46Al–2Cr alloy. Intermetallics 11(9):907–910. CrossRefGoogle Scholar
  113. 113.
    Kuriakose S, Shunmugam M (2005) Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. J Mater Process Technol 170(1):133–141. CrossRefGoogle Scholar
  114. 114.
    Zhao SG et al (2013) Study on the experimental of the electrical discharge machining titanium alloy on gas dielectric. Adv Mater Res 644:171–174CrossRefGoogle Scholar
  115. 115.
    Klocke F, Holsten M, Hensgen L, Klink A (2014) Experimental investigations on sinking-EDM of seal slots in gamma-TiAl. Procedia CIRP 24:92–96. CrossRefGoogle Scholar
  116. 116.
    Aspinwall DK, Dewes RC, Mantle AL (2005) The machining of γ-TiAI intermetallic alloys. CIRP Ann Manuf Technol 54(1):99–104. CrossRefGoogle Scholar
  117. 117.
    Aspinwall D et al (2003) Electrical discharge surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire. CIRP Ann-Manuf Technol 52(1):151–156. CrossRefGoogle Scholar
  118. 118.
    Sarkar S, Sekh M, Mitra S, Bhattacharyya B (2008) Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation. J Mater Process Technol 205(1):376–387. CrossRefGoogle Scholar
  119. 119.
    Sarkar S, Mitra S, Bhattacharyya B (2006) Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int J Adv Manuf Technol 27(5–6):501–508. CrossRefGoogle Scholar
  120. 120.
    Sarkar et al (2005) Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. J Mater Process Technol 159(3):286–294CrossRefGoogle Scholar
  121. 121.
    Mitra S et al. Micro electro discharge machine of γ-titanium aluminide alloy. Last accessed on Jan. 14, 2018
  122. 122.
    Jabbaripour B, Sadeghi MH, Shabgard MR, Faraji H (2013) Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. J Manuf Process 15(1):56–68. CrossRefGoogle Scholar
  123. 123.
    Ntasi A et al (2010) The effect of electro discharge machining (EDM) on the corrosion resistance of dental alloys. Dent Mater 26(12):e237–e245CrossRefGoogle Scholar
  124. 124.
    Wang X, Liu Z, Xue R, Tian Z, Huang Y (2014) Research on the influence of dielectric characteristics on the EDM of titanium alloy. Int J Adv Manuf Technol 72(5–8):979–987. CrossRefGoogle Scholar
  125. 125.
    Liu Y et al (2014) The simulation research of tool wear in small hole EDM machining on titanium alloy. Appl Mech Mater 624:249–254CrossRefGoogle Scholar
  126. 126.
    Soo S et al (2013) The effect of wire electrical discharge machining on the fatigue life of Ti-6Al-2Sn-4Zr-6Mo aerospace alloy. Procedia CIRP 6:215–219. CrossRefGoogle Scholar
  127. 127.
    Chen S-L, Lin MH, Huang GX, Wang CC (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311:47–53. CrossRefGoogle Scholar
  128. 128.
    Tsukahara H et al (2001) Surface modification of titanium using scanning electrode method by electro discharge machining. J Jpn Soc Electr Machin Eng 35(79):24–31. Google Scholar
  129. 129.
    Tsukahara H et al (2004) Tribological properties of surface modified layer of titanium using EDM process. J Jpn Soc Electr Mach Eng 38(87):24–30. in JapaneseGoogle Scholar
  130. 130.
    Obara et al (2005) Study of electrical discharge machining of titanium. J Jpn Soc Electr Mach Eng 39(92):92_36–92_41Google Scholar
  131. 131.
    Zain ZM et al (2011) Influence of electrode profiles on electrical discharge machining of titanium. Adv Mater Res 264-265:1205–1210CrossRefGoogle Scholar
  132. 132.
    Chow H-M, Yang LD, Lin CT, Chen YF (2008) The use of SiC powder in water as dielectric for micro-slit EDM machining. J Mater Process Technol 195(1):160–170. CrossRefGoogle Scholar
  133. 133.
    Yan BH, Chung Tsai H, Yuan Huang F (2005) The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium. Int J Mach Tools Manuf 45(2):194–200. CrossRefGoogle Scholar
  134. 134.
    Chow H-M, Yan BH, Huang FY, Hung JC (2000) Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. J Mater Process Technol 101(1):95–103. CrossRefGoogle Scholar
  135. 135.
    Kolli M, Adepu K (2014) Influence of span 20 surfactant and graphite powder added in dielectric fluid on EDM of titanium alloy. Bonfring Int J Ind Eng Manag Sci 4(2):62–67. Google Scholar
  136. 136.
    Yaman K, Çoğun C (2014) An experimental work on using conductive powder-filled polymer composite cast material as tool electrode in EDM. Int J Adv Manuf Technol 73(1–4):535–543CrossRefGoogle Scholar
  137. 137.
    Liew AAN (2010) Optimization of Machining Parameters of Titanium Alloy in Electrical Discharge Machining Based on Artificial Neural Network. Thesis, Universiti Malaysia PahangGoogle Scholar
  138. 138.
    Ramkumar J et al (2009) Characterization of plasma in micro-EDM discharge using optical spectroscopy. J Manuf Process 11(2):82–87CrossRefGoogle Scholar
  139. 139.
    Manjaiah M et al (2014) Wire electric discharge machining characteristics of titanium nickel shape memory alloy. Trans Nonferrous Metals Soc China 24(10):3201–3209. CrossRefGoogle Scholar
  140. 140.
    Xiangzhi W et al (2013) Study on influence by the conductivity of dielectrics on EDM performance of titanium alloy. Electromach Mould 4:004Google Scholar
  141. 141.
    Gao J et al (2014) Research of EDM titanium alloy TC11 based on GM(1,N) model and BP neural network. Appl Mech Mater 556-562:395–398CrossRefGoogle Scholar
  142. 142.
    Wansheng Z, Zhenlong W, Shichun D, Guanxin C, Hongyu W (2002) Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J Mater Process Technol 120(1):101–106. CrossRefGoogle Scholar
  143. 143.
    Kolli M, Kumar A (2014) Effect of boron carbide powder mixed into dielectric fluid on electrical discharge machining of titanium alloy. Procedia Mater Sci 5:1957–1965. CrossRefGoogle Scholar
  144. 144.
    Rongyuan X et al (2013) Influence of the dielectric characteristics on EDM performance of titanium alloy. Electromach Mould 6:003Google Scholar
  145. 145.
    Abdulkareem S et al (2011) Influence of electrode cooling on material migration among the electrodes during EDM of titanium alloy. Adv Mater Res 264-265:1199–1204CrossRefGoogle Scholar
  146. 146.
    Abdulkareem S et al (2011) Influence of electrode cooling on recast layers and micro crack in EDM of titanium. Adv Mater Res 264-265:1180–1186CrossRefGoogle Scholar
  147. 147.
    Mahardika et al (2008) A new approach on the determination of ease of machining by EDM processes. Int J Mach Tool Manuf 48(7):746–760CrossRefGoogle Scholar
  148. 148.
    Shangping G (2004) The tinting technique of the titanium alloy surface by use of EDM. Electromach Mould 6:017Google Scholar
  149. 149.
    Minami H et al (1998) Coloring method for titanium alloy by using EDM process. J Jpn Soc Electr Mach Eng 32(70):32–39. in JapaneseGoogle Scholar
  150. 150.
    Minami H et al (2001) Coloring of titanium alloy by EDM (2nd report) analysis of coloring mechanism. J Jpn Soc Electr Mach Eng 35(80):30–35. in JapaneseGoogle Scholar
  151. 151.
    Minami H et al (2002) Coloring of titanium alloy by EDM (3rd report) properties of colored surface. J Jpn Soc Electr Mach Eng 36(83):62–67. in JapaneseGoogle Scholar
  152. 152.
    Yaman K, Çoğun C (2014) An experimental work on using conductive powder-filled polymer composite cast material as tool electrode in EDM. Int J Adv Manuf Technol 73(1–4):535–543. CrossRefGoogle Scholar
  153. 153.
    Tsukahara H et al (1999) Surface modification of titanium using EDM process. J Jpn Soc Electr Mach Eng 33(74):9–15. in JapaneseGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Jaber E. Abu Qudeiri
    • 1
  • Abdel-Hamed I. Mourad
    • 1
  • Aiman Ziout
    • 1
  • Mustufa Haider Abidi
    • 2
  • Ahmed Elkaseer
    • 3
    • 4
  1. 1.Mechanical Engineering Department, College of EngineeringUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  2. 2.Princess Fatima Alnijiris’s Research Chair for Advanced Manufacturing Technology (FARCAMT), Advanced Manufacturing InstituteKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Production Engineering and Mechanical Design, Faculty of EngineeringPort Said UniversityPort SaidEgypt
  4. 4.Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations