Advertisement

Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review

  • Zhihe Duan
  • Tonghai Wu
  • Shuaiwei Guo
  • Tao Shao
  • Reza Malekian
  • Zhixiong Li
ORIGINAL ARTICLE

Abstract

A rolling bearing is an essential component of a rotating mechanical transmission system. Its performance and quality directly affects the life and reliability of machinery. Bearings’ performance and reliability need high requirements because of a more complex and poor working conditions of bearings. A bearing with high reliability reduces equipment operation accidents and equipment maintenance costs and achieves condition-based maintenance. First in this paper, the development of technology of the main individual physical condition monitoring and fault diagnosis of rolling bearings are introduced, then the fault diagnosis technology of multi-sensors information fusion is introduced, and finally, the advantages, disadvantages, and trends developed in the future of the detection main individual physics technology and multi-sensors information fusion technology are summarized. This paper is expected to provide the necessary basis for the follow-up study of the fault diagnosis of rolling bearings and a foundational knowledge for researchers about rolling bearings.

Keywords

Rolling bearings Detection technology Condition monitoring Fault diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research work was supported by the Natural Science Foundation of China (NSFC) (grant numbers: 51675403, 51275381 and 51505475), National Research Foundation, South Africa (grant numbers: IFR160118156967 and RDYR160404161474), and UOW Vice-Chancellor’s Postdoctoral Research Fellowship.

Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    Nandi S, Toliyat HA, Li X (2005) Condition monitoring and fault diagnosis of electrical motors—a review. IEEE transactions on Energy Conversion 20(4):719–729.  https://doi.org/10.1109/TEC.2005.847955 CrossRefGoogle Scholar
  2. 2.
    Junqing L (2010) Fault diagnosis technology of rolling bearing and its application in industry [D]. Zhengzhou UniversityGoogle Scholar
  3. 3.
    Lu Feng (2009) Study on fusion technology of aero engine fault diagnosis [D]. Nanjing University of Aeronautics & AstronauticsGoogle Scholar
  4. 4.
    Zhang J (2008) Research on sensor fault diagnosis method based on multi-source information fusion [D]. North China Electric Power University (Baoding)Google Scholar
  5. 5.
    Harris, Kotiz Larset al. Rolling bearing analysis [M]. Machinery Industry Press, 2009Google Scholar
  6. 6.
    Spacek J (2008) Maintenance strategies of power equipments with a brief view to condition monitoring of power transformers[C]//modern technique and technologies, 2008. MTT 2008. International conference. IEEE:16–19Google Scholar
  7. 7.
    Huang L, Chen Y, Chen S et al (2012) Application of RCM analysis based predictive maintenance in nuclear power plants[C]//International Conference on Quality, Reliability, Risk, Maintenance, and Safety. Engineering:1015–1021Google Scholar
  8. 8.
    Lei yaguo. Hybrid intelligent technology and its application [D]. Xi’an Jiao Tong University in fault diagnosis, 2007Google Scholar
  9. 9.
    Sturm A, Kinsky DLD (1984) Diagnostics of rolling-element bearing condition by means of vibration monitoring under operating conditions. Measurement 2(2):58–62.  https://doi.org/10.1016/0263-2241(84)90033-2 CrossRefGoogle Scholar
  10. 10.
    Mechefske CK, Mathew J (1992) Fault detection and diagnosis in low speed rolling element bearings part I: the use of parametric spectra[J]. Mech Syst Signal Process 6(4):297–307.  https://doi.org/10.1016/0888-3270(92)90032-E CrossRefGoogle Scholar
  11. 11.
    Mechefske CK, Mathew J (1993) Parametric spectral estimation to detect and diagnose faults in low speed rolling element bearings: preliminary investigations. Mech Syst Signal Process 7(1):1–12.  https://doi.org/10.1016/0888-3270(93)90001-D CrossRefGoogle Scholar
  12. 12.
    Martin HR, Honarvar F (1995) Application of statistical moments to bearing failure detection. Appl Acoust 44(1):67–77.  https://doi.org/10.1016/0003-682X(94)P4420-B CrossRefGoogle Scholar
  13. 13.
    Heng RBW, Nor MJM (1998) Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition. Appl Acoust 53(1):211–226.  https://doi.org/10.1016/S0003-682X(97)00018-2 CrossRefGoogle Scholar
  14. 14.
    Mori K, Kasashima N, Yoshioka T, Ueno Y (1996) Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals. Wear 195(1–2):162–168.  https://doi.org/10.1016/0043-1648(95)06817-1 CrossRefGoogle Scholar
  15. 15.
    Li CJ, Wu SM (1988) On-line severity assessment of bearing damage via defect sensitive resonance identification and matched filtering. Mech Syst Signal Process 2(3):291–303CrossRefGoogle Scholar
  16. 16.
    Dron JP, Rasolofondraibe L, Bolaers F, Pavan A (2001) High-resolution methods in vibratory analysis: application to ball bearing monitoring and production machine. International Journal of Solids & Structures 38(24–25):4293–4313.  https://doi.org/10.1016/S0020-7683(00)00277-8 zbMATHCrossRefGoogle Scholar
  17. 17.
    Liu B, Ling SF, Gribonval R (2002) Bearing failure detection using matching pursuit. Ndt & E Int 35(4):255–262.  https://doi.org/10.1016/S0963-8695(01)00063-9 CrossRefGoogle Scholar
  18. 18.
    Samanta B, Al-Balushi KR (2003) Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mech Syst Signal Process 17(2):317–328.  https://doi.org/10.1006/mssp.2001.1462 CrossRefGoogle Scholar
  19. 19.
    Lou X, Loparo KA (2004) Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech Syst Signal Process 18(5):1077–1095.  https://doi.org/10.1016/S0888-3270(03)00077-3 CrossRefGoogle Scholar
  20. 20.
    Kar C, Mohanty AR (2004) Application of KS test in ball bearing fault diagnosis. J Sound Vib 269(1–2):439–454.  https://doi.org/10.1016/S0022-460X(03)00380-8 CrossRefGoogle Scholar
  21. 21.
    Purushotham V, Narayanan S, Prasad SAN (2005) Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. Ndt & E Int 38(8):654–664.  https://doi.org/10.1016/j.ndteint.2005.04.003 CrossRefGoogle Scholar
  22. 22.
    Randall RB (2004) Detection and diagnosis of incipient bearing failure in helicopter gearboxes. Eng Fail Anal 11(2):177–190.  https://doi.org/10.1016/j.engfailanal.2003.05.005 CrossRefGoogle Scholar
  23. 23.
    Sawalhi N, Randall RB (2008) Simulating gear and bearing interactions in the presence of faults: part I. The combined gear bearing dynamic model and the simulation of localised bearing faults. Mech Syst Signal Process 22(22):1924–1951.  https://doi.org/10.1016/j.ymssp.2007.12.001 CrossRefGoogle Scholar
  24. 24.
    Sawalhi N, Randall RB (2008) Simulating gear and bearing interactions in the presence of faults: part II: simulation of the vibrations produced by extended bearing faults. Mech Syst Signal Process 22(8):1952–1966.  https://doi.org/10.1016/j.ymssp.2007.12.002 CrossRefGoogle Scholar
  25. 25.
    Cheng J, Yu D, Yang Y (2006) A fault diagnosis approach for roller bearings based on EMD method and AR model. Mech Syst Signal Process 20(2):350–362CrossRefGoogle Scholar
  26. 26.
    Hao R, Chu F (2009) Morphological undecimated wavelet decomposition for fault diagnostics of rolling element bearings. Journal of Sound & Vibration 320(4):1164–1177.  https://doi.org/10.1016/j.jsv.2008.09.014 CrossRefGoogle Scholar
  27. 27.
    Zhang S, Mathew J, Ma L, Sun Y (2005) Best basis-based intelligent machine fault diagnosis. Mech Syst Signal Process 19(2):357–370.  https://doi.org/10.1016/j.ymssp.2004.06.001 CrossRefGoogle Scholar
  28. 28.
    Khemili I, Chouchane M (2005) Detection of rolling element bearing defects by adaptive filtering. Eur J Mech - A/Solids 24(2):293–303.  https://doi.org/10.1016/j.euromechsol.2004.10.003 zbMATHCrossRefGoogle Scholar
  29. 29.
    Abbasion S, Rafsanjani A, Farshidianfar A, Irani N (2007) Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech Syst Signal Process 21(7):2933–2945.  https://doi.org/10.1016/j.ymssp.2007.02.003 CrossRefGoogle Scholar
  30. 30.
    Yuan J, He Z, Zi Y, Lei Y, Li Z (2009) Adaptive multiwavelets via two-scale similarity transforms for rotating machinery fault diagnosis. Mech Syst Signal Process 23(5):1490–1508.  https://doi.org/10.1016/j.ymssp.2008.12.005 CrossRefGoogle Scholar
  31. 31.
    Wang Y, He Z, Zi Y (2010) Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform. Mech Syst Signal Process 24(1):119–137.  https://doi.org/10.1016/j.ymssp.2009.06.015 CrossRefGoogle Scholar
  32. 32.
    Wang G, Luo Z, Qin X, Leng Y, Wang T (2008) Fault identification and classification of rolling element bearing based on time-varying autoregressive spectrum. Mech Syst Signal Process 22(4):934–947.  https://doi.org/10.1016/j.ymssp.2007.10.008 CrossRefGoogle Scholar
  33. 33.
    Wang W, Li Q, Zhao G (2008) Novel approach based on chaotic oscillator for machinery fault diagnosis. Measurement 41(8):904–911CrossRefGoogle Scholar
  34. 34.
    Hong H, Liang M (2009) Fault severity assessment for rolling element bearings using the Lempel–Ziv complexity and continuous wavelet transform. J Sound Vib 320(1–2):452–468.  https://doi.org/10.1016/j.jsv.2008.07.011 CrossRefGoogle Scholar
  35. 35.
    Lei Y, Lin J, He Z, Zi Y (2011) Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mech Systems Signal Process 25(5):1738–1749.  https://doi.org/10.1016/j.ymssp.2010.12.011 CrossRefGoogle Scholar
  36. 36.
    Zhou Y, Chen J, Dong GM, Xiao WB, Wang ZY (2012) Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis. Mech Syst Signal Process 26(1):229–243.  https://doi.org/10.1016/j.ymssp.2011.07.006 CrossRefGoogle Scholar
  37. 37.
    Wang X, Zi Y, He Z (2011) Multiwavelet denoising with improved neighboring coefficients for application on rolling bearing fault diagnosis. Mech Syst Signal Process 25(1):285–304.  https://doi.org/10.1016/j.ymssp.2010.03.010 CrossRefGoogle Scholar
  38. 38.
    Lei Y, Lin J, He Z, Zuo MJ (2013) A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech Syst Signal Process 35(1–2):108–126.  https://doi.org/10.1016/j.ymssp.2012.09.015 CrossRefGoogle Scholar
  39. 39.
    Wang J, Xu G, Zhang Q, Liang L (2009) Application of improved morphological filter to the extraction of impulsive attenuation signals. Mech Syst Signal Process 23(1):236–245.  https://doi.org/10.1016/j.ymssp.2008.03.012 CrossRefGoogle Scholar
  40. 40.
    Cui L, Wu N, Ma C et al (2016) Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary. Mech Syst Signal Process 68Google Scholar
  41. 41.
    Wang T, Liang M, Li J et al (2015) Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification. Mech Syst Signal Process 62–63:30–53CrossRefGoogle Scholar
  42. 42.
    Li B, Zhang PL, Liu DS et al (2011) Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization. J Sound Vib 330(10):2388–2399.  https://doi.org/10.1016/j.jsv.2010.11.019 CrossRefGoogle Scholar
  43. 43.
    Borghesani P, Pennacchi P, Randall RB, Sawalhi N, Ricci R (2013) Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mech Syst Signal Process 36(2):370–384.  https://doi.org/10.1016/j.ymssp.2012.11.001 CrossRefGoogle Scholar
  44. 44.
    Rai A, Upadhyay SHA (2016) Review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol Int 96:289–306.  https://doi.org/10.1016/j.triboint.2015.12.037 CrossRefGoogle Scholar
  45. 45.
    Balerston HL (1969) The detection of incipient failure in bearings. Mater Eval 27:121–128Google Scholar
  46. 46.
    Yoshioka T, Fujiwara TA (1982) New acoustic emission source locating system for the study of rolling contact fatigue. Wear 81(1):183–186.  https://doi.org/10.1016/0043-1648(82)90314-3 CrossRefGoogle Scholar
  47. 47.
    Catlin Jr. J.B. The use of ultrasonic diagnostic technique to detect rolling element bearing defects. Proceeding of machinery and vibration monitoring and analysis meeting ,vibration institute, USA,April 1983,123–130Google Scholar
  48. 48.
    Holroyd TJ, Randall N (1994) Use of acoustic emission for machine condition monitoring Bri J Non-Destructive Testong, Vol. 35, No.2, pp. 75–78 (Feb. 1993)[J]. Ndt & E Int 27(4):210–210.  https://doi.org/10.1016/0963-8695(94)90465-0 CrossRefGoogle Scholar
  49. 49.
    Bagnoli, S., Capitani, R., Citti, P. Comparison of accelerometer and acoustic emission signals as diagnostic tools in assessing bearing, Proceedings of 2nd international conference on condition monitoring, London, UK, 1988,5,117–125Google Scholar
  50. 50.
    Bansal V, Gupta B C, Prakash A, Eshwar V.A. (1994) Quality inspection of rolling element bearing using acoustic emission technique Journal of Acoustic Emission, Vol. 9, No. 2, pp. 142–146 (1990)[J]. Ndt & E Int, 27(4):216–216,  https://doi.org/10.1016/0963-8695(94)90527-4
  51. 51.
    Shiroishi J, Li Y, Liang S, Kurfess T, Danyluk S (1997) Bearing condition diagnostics via vibration and acoustic emission measurements. Mech Syst Signal Process 11(5):693–705.  https://doi.org/10.1006/mssp.1997.0113 CrossRefGoogle Scholar
  52. 52.
    Yoshioka T, Korenaga A, Mano H, Yamamoto T (1999) Diagnosis of rolling bearing by measuring time interval of AE generation. J Tribol 121(3):468–472.  https://doi.org/10.1115/1.2834091 CrossRefGoogle Scholar
  53. 53.
    Morhain A, Mba D. Bearing defect diagnosis and acoustic emission. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology 1994–1996 (vols 208–210), 2003, 217(4):257–272Google Scholar
  54. 54.
    Choudhury A, Tandon N (2000) Application of acoustic emission technique for the detection of defects in rolling element bearings. Tribol Int 33(1):39–45.  https://doi.org/10.1016/S0301-679X(00)00012-8 CrossRefGoogle Scholar
  55. 55.
    Guo YB, Schwach DW (2005) An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique. Int J Fatigue 27(9):1051–1061.  https://doi.org/10.1016/j.ijfatigue.2005.03.002 CrossRefGoogle Scholar
  56. 56.
    Al-Ghamd AM, Mba D (2006) A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size. Mech Syst Signal Process 20(7):1537–1571.  https://doi.org/10.1016/j.ymssp.2004.10.013 CrossRefGoogle Scholar
  57. 57.
    Li Y, Billington S, Zhang C et al (2008) Dynamic prognostic prediction of defect propagation on rolling element bearings. Tribol Trans 42(2):385–392CrossRefGoogle Scholar
  58. 58.
    Elforjani M, Mba D (2009) Detecting natural crack initiation and growth in slow speed shafts with the acoustic emission technology. Eng Fail Anal 16(7):2121–2129.  https://doi.org/10.1016/j.engfailanal.2009.02.005 CrossRefGoogle Scholar
  59. 59.
    Eftekharnejad B (2010) Condition monitoring of gearboxes using acoustic emission. Cranfield UniversityGoogle Scholar
  60. 60.
    Kilundu B, Chiementin X, Duez J, Mba D (2011) Cyclostationarity of acoustic emissions (AE) for monitoring bearing defects. Mech Syst Signal Process 25(6):2061–2072.  https://doi.org/10.1016/j.ymssp.2011.01.020 CrossRefGoogle Scholar
  61. 61.
    Gu DS, Kim JG, An YS et al (2011) Detection of faults in gearboxes using acoustic emission signal. J Mech Sci Technol 25(5):1279–1286.  https://doi.org/10.1007/s12206-011-0231-4 CrossRefGoogle Scholar
  62. 62.
    Elforjani M, Mba D, Muhammad A, Sire A (2012) Condition monitoring of worm gears. Appl Acoust 73(8):859–863.  https://doi.org/10.1016/j.apacoust.2012.03.008 CrossRefGoogle Scholar
  63. 63.
    Lu W, Jiang W, Wu H, Hou J (2012) A fault diagnosis scheme of rolling element bearing based on near-field acoustic holography and gray level co-occurrence matrix. J Sound Vib 331(15):3663–3674.  https://doi.org/10.1016/j.jsv.2012.03.008 CrossRefGoogle Scholar
  64. 64.
    Wang J, He Q, Kong FA (2014) New synthetic detection technique for trackside acoustic identification of railroad roller bearing defects. Appl Acoust 85(6):69–81.  https://doi.org/10.1016/j.apacoust.2014.04.005 CrossRefGoogle Scholar
  65. 65.
    Elasha F, Mba D (2015) Vibration and acoustics emissions analysis of helicopter gearbox, a comparative study[C]// international conference on reliability, safety and hazardGoogle Scholar
  66. 66.
    Sadegh H, Mehdi AN, Mehdi A (2015) Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithm. Tribol Int 1(1):23–32Google Scholar
  67. 67.
    Hase A, Mishina H, Wada M (2015) Fundamental study on early detection of seizure in journal bearing by using acoustic emission technique. Wear 346:132–139Google Scholar
  68. 68.
    Tonghai WU, Hongkun WU, Ying DU et al (2013) Progress and trend of sensor technology for on-line oil monitoring. SCIENCE CHINA Technol Sci 56(12):2914–2926CrossRefGoogle Scholar
  69. 69.
    Wu T, Mao J, Dong G et al (2010) Journal bearing wear monitoring via on-line visual ferrography. Adv Mater Res 44-46:189–194CrossRefGoogle Scholar
  70. 70.
    Elnasharty IY, Kassem AK, Sabsabi M, Harith MA (2011) Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra. Spectrochimica Acta Part B. At Spectrosc 66(8):588–593.  https://doi.org/10.1016/j.sab.2011.06.001 CrossRefGoogle Scholar
  71. 71.
    [Idros M F M, Ali S, Islam M S. (2014) Condition based engine oil degradation monitoring system, synthesis and realization on ASIC[C]// IEEE International Conference on Semiconductor Electronics. IEEE, 9548–53Google Scholar
  72. 72.
    Beran E (2010) Effect of chemical structure on the hydrolytic stability of lubricating base oils. Tribol Int 43(12):2372–2377.  https://doi.org/10.1016/j.triboint.2010.09.001 CrossRefGoogle Scholar
  73. 73.
    Agoston A, Ötsch C, Jakoby B (2005) Viscosity sensors for engine oil condition monitoring—application and interpretation of results. Sensors Actuators A Phys 121(2):327–332.  https://doi.org/10.1016/j.sna.2005.02.024 CrossRefGoogle Scholar
  74. 74.
    Markova LV, Myshkin NK, Kong H, Han HG (2011) On-line acoustic viscometry in oil condition monitoring. Tribol Int 44(9):963–970.  https://doi.org/10.1016/j.triboint.2011.03.018 CrossRefGoogle Scholar
  75. 75.
    Durdag K (2008) Solid state acoustic wave sensors for real-time in-line measurement of oil viscosity. Sens Rev 28(1):68–73.  https://doi.org/10.1108/02602280810850053 CrossRefGoogle Scholar
  76. 76.
    Stoyanov PG, Grimes CA (2000) A remote query magnetostrictive viscosity sensor. Sensors Actuators A Phys 80(1):8–14.  https://doi.org/10.1016/S0924-4247(99)00288-5 CrossRefGoogle Scholar
  77. 77.
    Raadnui S, Kleesuwan S (2005) Low-cost condition monitoring sensor for used oil analysis. Wear 259(7):1502–1506.  https://doi.org/10.1016/j.wear.2004.11.009 CrossRefGoogle Scholar
  78. 78.
    Shi-Yong MA (2001) Development and application of a radio-frequency capacitive sensor. Journal of Transducer TechnologyGoogle Scholar
  79. 79.
    Turner JD, Austin L (2003) Electrical techniques for monitoring the condition of lubrication oil. Meas Sci Technol 186(14):1051–1061Google Scholar
  80. 80.
    Smiechowski MF, Lvovich VF (2002) Electrochemical monitoring of water–surfactant interactions in industrial lubricants. J Electroanal Chem 534(2):171–180.  https://doi.org/10.1016/S0022-0728(02)01106-3 CrossRefGoogle Scholar
  81. 81.
    [Kwon O K, Kong H S, Han H G, et al. (2000) On-line measurement of contaminant level in lubricating oil: US, US 6151108 A[P]Google Scholar
  82. 82.
    Kuo WF, Chiou YC, Lee RT (1997) Fundamental characteristics of wear particle deposition measurement by an improved on-line ferrographic analyzer. Wear 208(1–2):42–49.  https://doi.org/10.1016/S0043-1648(96)07405-4 CrossRefGoogle Scholar
  83. 83.
    Mao JHA (2009) New on-line visual Ferrograph. Tribol Trans 52(5):623–631CrossRefGoogle Scholar
  84. 84.
    Han L, Hong W, Wang S (2011) The key points of inductive wear debris sensor[C]// international conference on fluid power and mechatronics 809–815Google Scholar
  85. 85.
    Powrie H. (2000) Use of electrostatic technology for aero engine oil system monitoring[C]// Aerospace Conference Proceedings. IEEE, 57–72 vol.6Google Scholar
  86. 86.
    Brown N K, Friedersdorf F J (2013) Systems and methods to detect particulate debris in a fluid: US, US 8474305 B2[P]Google Scholar
  87. 87.
    Edmonds J, Resner M S, Shkarlet K (2000) Detection of precursor wear debris in lubrication systems[C] :73–77 vol.6Google Scholar
  88. 88.
    Adams MJ, Romeo MJ, Rawson PFTIR (2007) Analysis and monitoring of synthetic aviation engine oils. Talanta 73(4):629–634.  https://doi.org/10.1016/j.talanta.2007.04.036 CrossRefGoogle Scholar
  89. 89.
    Voort FRVD, Sedman J, Pinchuk D (2011) An overview of progress and new developments in FTIR lubricant condition monitoring methodology. J ASTM Int 8(5):1–14Google Scholar
  90. 90.
    Koskinen V, Fonsen J, Kauppinen J, Kauppinen I (2006) Extremely sensitive trace gas analysis with modern photoacoustic spectroscopy. Vib Spectrosc 42(2):239–242.  https://doi.org/10.1016/j.vibspec.2006.05.018 CrossRefGoogle Scholar
  91. 91.
    Becker A (2008) Application of an X-ray fluorescence instrument to helicopter wear debris analysis. Afr J Biotechnol 7(20):3550–3553Google Scholar
  92. 92.
    Dempsey PJ A comparison of vibration and oil debris gear damage detection methods applied to pitting damage. 2000. NASA Glenn Research CenterGoogle Scholar
  93. 93.
    Chengqing Y (2005) Study on the characteristics of wear surface and wear surface and their relation to the wear process [D]. Wuhan University of TechnologyGoogle Scholar
  94. 94.
    Peng Z, Kirk TB (1998) Automatic wear-particle classification using neural networks. Tribol Lett 5(4):249–257.  https://doi.org/10.1023/A:1019126732337 CrossRefGoogle Scholar
  95. 95.
    Chiou YC, Lee RT, Tsai CY (1998) An on-line hall-effect device for monitoring wear particle in oils. Wear 223(1–2):44–49.  https://doi.org/10.1016/S0043-1648(98)00289-0 CrossRefGoogle Scholar
  96. 96.
    Yan L, Zhong L, Xie Y et al (2000) Research on an on-line wear condition monitoring system for marine diesel engine. Tribol Int 33(12):829–835CrossRefGoogle Scholar
  97. 97.
    Miller JL, Kitaljevich D (2000) In-line oil debris monitor for aircraft engine condition assessment. IEEE Aerospace Conference Proceedings 6:49–56Google Scholar
  98. 98.
    Levi O, Eliaz N (2009) Failure analysis and condition monitoring of an open-loop oil system using ferrography. Tribol Lett 36(1):17–29.  https://doi.org/10.1007/s11249-009-9454-2 CrossRefGoogle Scholar
  99. 99.
    Wu T, Peng Y, Wu H et al (2014) Full-life dynamic identification of wear state based on on-line wear debris image features. Mech Syst Signal Process 42(s 1–2):404–414MathSciNetCrossRefGoogle Scholar
  100. 100.
    Hongbin M (1994) Microcomputer monitoring and diagnosis system for bearing test machine of high speed railway vehicle. J Huazhong Univ Sci Technol 7:22–27Google Scholar
  101. 101.
    Zhenhua T, Wang Z, Ma C (2001) Rolling bearing condition monitoring system. J Changchun Univ Technol 22(4):8–10Google Scholar
  102. 102.
    Ning Lian, Zhou Jiemin. Temperature condition monitoring technology for rolling bearings. Bearing, 2007 (2): 25–27Google Scholar
  103. 103.
    Tala-Ighil N, Fillon MA (2015) Numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics. Tribol Int 90:228–239.  https://doi.org/10.1016/j.triboint.2015.02.032 CrossRefGoogle Scholar
  104. 104.
    Yan K, Wang N, Zhai Q, Zhu Y, Zhang J, Niu Q (2015) Theoretical and experimental investigation on the thermal characteristics of double-row tapered roller bearings of high speed locomotive. Int J Heat Mass Transfer 84:1119–1130.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.057 CrossRefGoogle Scholar
  105. 105.
    Yan K, Wang Y, Zhu Y et al (2015) Investigation on heat dissipation characteristic of ball bearing cage and inside cavity at ultra high rotation speed. Tribol Int 93:470–481CrossRefGoogle Scholar
  106. 106.
    Yan K, Hong J, Zhang J, Mi W, Wu W (2016) Thermal-deformation coupling in thermal network for transient analysis of spindle-bearing system. Int J Therm Sci 104:1–12.  https://doi.org/10.1016/j.ijthermalsci.2015.12.007 CrossRefGoogle Scholar
  107. 107.
    Kim YH, Tan ACC, Mathew J et al (2008) Condition monitoring of low speed bearings: a comparative study of the ultrasound technique versus vibration measurements[M]// engineering asset management. Springer, London, pp 182–191Google Scholar
  108. 108.
    Lineham J (2008) Ultrasonic probes for inspecting bearings. World Pumps 2008(503):34–36.  https://doi.org/10.1016/S0262-1762(08)70252-9 CrossRefGoogle Scholar
  109. 109.
    Schirru M M, Dwyer-Joyce R S (2015) A model for the reflection of shear ultrasonic waves at a thin liquid film and its application to viscometry in a journal bearing. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology 1994–1996 (vols 208–210), 230Google Scholar
  110. 110.
    Drinkwater BW, Zhang J, Kirk KJ, Elgoyhen J, Dwyer-Joyce RS (2009) Ultrasonic measurement of rolling bearing lubrication using piezoelectric thin films. J Tribol 131(1):011502.  https://doi.org/10.1115/1.3002324 CrossRefGoogle Scholar
  111. 111.
    Zhang K, Meng Q, Chen W, et al. (2015) Ultrasonic measurement of oil film thickness between the roller and the inner raceway in a roller bearing. Ind Lubr Tribol, 67(6)Google Scholar
  112. 112.
    Zhihe Duan, Tonghai Wu, Yuelei Zhang, et al. (2016) Design of an aircraft rolling bearings platform and its thermal performance evaluation. Tehnicki Vjesnik-Technical Gazette (Accepted)Google Scholar
  113. 113.
    Hernandezsolis A, Carlsson F (2015) Diagnosis of submersible centrifugal pumps: a motor current and power signature approaches. Epe J Eur Power Electron Drives 20(1):58–64Google Scholar
  114. 114.
    Mohanty AR (2012) 1. Fault detection in a centrifugal pump using vibration and motor current signature analysis. Int J Autom Control 6(3/4):261–276.  https://doi.org/10.1504/IJAAC.2012.051884 CrossRefGoogle Scholar
  115. 115.
    Ma J, Wang S, Zhao M, Deng XS, Lee CK, Yu XD, Liu B (2011) Therapeutic potential of cladribine in combination with STAT3 inhibitor against multiple myeloma. BMC Cancer 11(18):255.  https://doi.org/10.1186/1471-2407-11-255 CrossRefGoogle Scholar
  116. 116.
    Hegde V, Maruthi GS (2012) Experimental investigation on detection of air gap eccentricity in induction motors by current and vibration signature analysis using non-invasive sensors. Energy Procedia 14(4):1047–1052.  https://doi.org/10.1016/j.egypro.2011.12.1053 CrossRefGoogle Scholar
  117. 117.
    Pires VF, Kadivonga M, Martins JF, Pires AJ (2013) Motor square current signature analysis for induction motor rotor diagnosis. Measurement 46(2):942–948.  https://doi.org/10.1016/j.measurement.2012.10.008 CrossRefGoogle Scholar
  118. 118.
    Wald L (1999) Some terms of reference in data fusion. IEEE Trans Geosci Remote Sens 37(3):1190–1193.  https://doi.org/10.1109/36.763269 CrossRefGoogle Scholar
  119. 119.
    Liu Q, Wang HP (2001) A case study on multisensor data fusion for imbalance diagnosis of rotating machinery. Artif Intell Eng Des Anal Manuf 15(3):203–210.  https://doi.org/10.1017/S0890060401153011 zbMATHCrossRefGoogle Scholar
  120. 120.
    Hansen RJ, Hall DL, Kurtz SK (1995) New approach to the challenge of machinery prognostics. J Eng Gas Turbines Power 117(2):320–325.  https://doi.org/10.1115/1.2814097 CrossRefGoogle Scholar
  121. 121.
    Fang XD, Yao YL (1997) In-process evaluation of the overall machining performance in finish-turning via single data source. J Manuf Sci Eng 119(3):444–447.  https://doi.org/10.1115/1.2831127 CrossRefGoogle Scholar
  122. 122.
    Chen Y, Orady E (1999) An entropy-based index evaluation scheme for multiple sensor fusion in classification process. J Manuf Sci Eng 121(4):727–732.  https://doi.org/10.1115/1.2833126 CrossRefGoogle Scholar
  123. 123.
    Khan A, Ceglarek D, Shi J, Ni J, Woo TC (1999) Sensor optimization for fault diagnosis in single fixture systems: a methodology. J Manuf Sci Eng 121(1):109–117.  https://doi.org/10.1115/1.2830562 CrossRefGoogle Scholar
  124. 124.
    Heger AT, Pandit MC (2004) Optical wear assessment system for grinding tools. Proc SPIE 13(13):450–461Google Scholar
  125. 125.
    Azouzi R, Guillot M (1997) On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion. Int J Mach Tool Manu 37(9):1201–1217.  https://doi.org/10.1016/S0890-6955(97)00013-8 CrossRefGoogle Scholar
  126. 126.
    Quan Y, Zhou M, Luo Z (1998) On-line robust identification of tool-wear via multi-sensor neural-network fusion. Eng Appl Artif Intell 11(6):717–722.  https://doi.org/10.1016/S0952-1976(98)00046-3 CrossRefGoogle Scholar
  127. 127.
    Peng Z (2002) An integrated intelligence system for wear debris analysis. Wear 252(9):730–743.  https://doi.org/10.1016/S0043-1648(02)00031-5 CrossRefGoogle Scholar
  128. 128.
    Peng Z, Kessissoglou NJ, Cox MA (2005) Study of the effect of contaminant particles in lubricants using wear debris and vibration condition monitoring techniques[J]. Wear 258(11–12):1651–1662.  https://doi.org/10.1016/j.wear.2004.11.020 CrossRefGoogle Scholar
  129. 129.
    Akagaki T, Nakamura M, Monzen T, et al. Analysis of the behaviour of rolling bearings in contaminated oil using some condition monitoring techniques. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology 1994–1996 (vols 208–210), 2006, 220(5):447–453Google Scholar
  130. 130.
    Dan MS, Tiran J (2007) Condition-based fault tree analysis (CBFTA): a new method for improved fault tree analysis (FTA), reliability and safety calculations. Reliab Eng Syst Saf 92(9):1231–1241CrossRefGoogle Scholar
  131. 131.
    Feng W, Xie X, Cao Y (2009) Study on fault diagnosis of gear with spall using ferrography and vibration analysis[C]// international conference on measuring technology and mechatronics automation. IEEE:723–727Google Scholar
  132. 132.
    Tan CK, Mba D (2005) Identification of the acoustic emission source during a comparative study on diagnosis of a spur gearbox. Tribol Int 38(5):469–480.  https://doi.org/10.1016/j.triboint.2004.10.007 CrossRefGoogle Scholar
  133. 133.
    Tan CK, Irving P, Mba DA (2007) Comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears. Mech Syst Signal Process 21(1):208–233.  https://doi.org/10.1016/j.ymssp.2005.09.015 CrossRefGoogle Scholar
  134. 134.
    Loutas TH, Roulias D, Pauly E, Kostopoulos V (2011) The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery[J]. Mech Syst Signal Process 25(4):1339–1352.  https://doi.org/10.1016/j.ymssp.2010.11.007 CrossRefGoogle Scholar
  135. 135.
    Li Z, Yan X (2013) Study on data fusion of multi-dimensional sensors for health monitoring of rolling bearings. Insight-Non-Destructive Testing and Condition Monitoring 55(3):147–151.  https://doi.org/10.1784/insi.2012.55.3.147 CrossRefGoogle Scholar
  136. 136.
    Gao J, Zhang P, Liu B et al (2007) An integrated fault diagnosis method of gearboxes using oil analysis and vibration analysis[C]// international conference on electronic measurement and instruments. IEEE:1348–1353Google Scholar
  137. 137.
    Ebersbach S, Peng Z, Yuan C et al (2009) Machine condition monitoring and remaining life prediction using integrated approach[M]// advanced tribology. Springer Berlin Heidelberg:949–956Google Scholar
  138. 138.
    Yan X, Li Z, Yuan C et al (2013) On-line condition monitoring and remote fault diagnosis for marine diesel engines using tribological information. Chemical Engineering 33:805–810Google Scholar
  139. 139.
    MeriñoGergichevich, Cristian, Ondrasek, et al. Comparative study of methodologies to determine antioxidant capacity in Al-toxified blueberry amended with calcium sulphate. Journal of Soil Science & Plant Nutrition, 2014Google Scholar
  140. 140.
    Wang F, Sun J, Yan D et al (2015) A feature extraction method for fault classification of rolling bearing based on PCA[C]//journal of physics: conference series. IOP Publishing 628(1):012079Google Scholar
  141. 141.
    Pavle Boškoski, Matej Gašperin, Dejan Petelin, et al. (2015) Bearing fault prognostics using Rényi entropy based features and Gaussian process models. Mechanical Systems\s&\ssignal Processing, s 52–53:327–337Google Scholar
  142. 142.
    Zhang S, Zhang Y, Li L, Zhu J (2015) Rolling elements bearings degradation indicator based on continuous hidden Markov model. J Failure Anal Prev 15(5):691–696.  https://doi.org/10.1007/s11668-015-9999-3 CrossRefGoogle Scholar
  143. 143.
    Malekian R, Alain K, Maharaj BT, Gupta P, Singh G, Waschefort H (2016) Smart vehicle navigation system using hidden Markov model and RFID technology. Wireless Personal Communications, Springer 90(4):1717–1742.  https://doi.org/10.1007/s11277-016-3419-1 CrossRefGoogle Scholar
  144. 144.
    Wang Z, Ye N, Wang R, Li P (2016) TMicroscope: behavior perception based on the slightest RFID tag motion. Elektronika ir Elektrotechnika 22(2):114–122CrossRefGoogle Scholar
  145. 145.
    Wang Z, Ye N, Xiao F, Wang R (2016) TrackT: accurate tracking of RFID tags with mm-level accuracy using first-order Taylor series approximation. AD Hoc Networks Elsevier 53:132–144CrossRefGoogle Scholar
  146. 146.
    Jin X, Shao J, Zhang X, An W (2016) Modeling of nonlinear system based on deep learning framework. Nonlinear Dynamics, Springer 84(3):1327–1340.  https://doi.org/10.1007/s11071-015-2571-6 MathSciNetCrossRefGoogle Scholar
  147. 147.
    Reza M, Bogatinoska DC, Karadimce A, Trengoska J, Nyako WA (2015) A novel smart ECO model for energy consumption optimization. 2015, Elektronika ir Elektrotechnika 21(6):75–80Google Scholar
  148. 148.
    Li X, Wang S, Hao S, Li Z (2016) Numerical simulation of rock breakage modes under confining pressures in the rock cutting process: an experimental investigation. IEEE Access 4:5710–5720.  https://doi.org/10.1109/ACCESS.2016.2608384 CrossRefGoogle Scholar
  149. 149.
    Gong T, Huang H, Chen P, Chen T (2016) Secure two-party distance computation protocol based on privacy homomorphism and scalar product in wireless sensor networks. Tsinghua Sci Technol (IEEE) 21(4):385–396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing SystemSchool of Mechanical Engineering, Xi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Electrical, Electronic & Computer EngineeringUniversity of PretoriaPretoriaSouth Africa
  3. 3.School of Mechatronics EngineeringChina University of Mining & TechnologyXuzhouChina
  4. 4.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations