Electrochemical micro texturing on flat and curved surfaces: simulation and experiments

  • Divyansh Singh PatelEmail author
  • V. K. Jain
  • Ankit Shrivastava
  • J. Ramkumar


Laser surface texturing and through-mask electrochemical micromachining (TMECMM) are some of the commonly used methods which include multiple steps to achieve micro-textures. However, for large-area applications, it is desirable to have an economical single-step process. In this regard, ECMM is expected to be a promising and economically viable micro-texturing process for micro-manufacturing industries. This paper proposes a novel maskless EC micro-texturing process using tool sinking technique with low voltage and short pulses. Methodology of using edges (∼30 μm each) of printed circuit boards (PCBs) for ECMM of micro-channels and micro-pillars is a unique one. Micro-pillars, micro-dimples and micro-channels are produced through a direct electrochemical cathode sinking process. Analysis of current density and prediction of width and depth of micro-dimples on a flat stainless steel surface are studied through 2D numerical simulation carried out on COMSOL 4.3a. The proposed method implies the use of less toxic electrolyte, low voltage (1–6 V), short pulses (5 to 50 μs) and selective polymer coating on the tool (cathode). A series of experiments of EC sinking for creating various micro-patterns and micro-structures has been carried out on the flat as well as curved metallic surfaces. This paper reports machining of micro-dimples of 200–300 μm diameter, micro-channels of 150–250 μm and square micro-pillars of 300–350 μm. Comparison of the predicted geometrical dimensions of the micro-dimples through the simulation shows reasonable agreement with the experimental results for the given process parameters of ECMM. The paper also reports a brief comparison of laser surface texturing (LSTex) and electrochemical surface texturing (ECSTex).


Micro-pillars Micro-channels Micro-dimples Electrochemical texturing Current density Laser surface texturing Stainless steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Callies M, Chen Y, Marty F et al (2005) Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectron Eng 78–79:100–105. doi: 10.1016/j.mee.2004.12.093 CrossRefGoogle Scholar
  2. 2.
    Etsion I, Sher E (2009) Improving fuel efficiency with laser surface textured piston rings. Tribol Int 42:542–547. doi: 10.1016/j.triboint.2008.02.015 CrossRefGoogle Scholar
  3. 3.
    Byun JW, Shin HS, Kwon MH et al (2010) Surface texturing by micro ECM for friction reduction. Int J Precis Eng Manuf 11:747–753. doi: 10.1007/s12541-010-0088-y CrossRefGoogle Scholar
  4. 4.
    Qian S, Zhu D, Qu N et al (2010) Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining. Int J Adv Manuf Technol 47:1121–1127. doi: 10.1007/s00170-009-2246-x CrossRefGoogle Scholar
  5. 5.
    Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178. doi: 10.1016/j.pmatsci.2008.07.003 CrossRefGoogle Scholar
  6. 6.
    Mockenhaupt B, Ensikat HJ, Spaeth M, Barthlott W (2008) Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure. Langmuir 24:13591–13597. doi: 10.1021/la802351h CrossRefGoogle Scholar
  7. 7.
    Callies M, Quéré D (2005) On water repellency. Soft Matter 1:55. doi: 10.1039/b501657f CrossRefGoogle Scholar
  8. 8.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. J Ind Eng Chem (Washington, D C) 28:988–994. doi: 10.1021/ie50320a024 Google Scholar
  9. 9.
    Wang Y, Chen S (2015) Droplets impact on textured surfaces: mesoscopic simulation of spreading dynamics. Appl Surf Sci 327:159–167. doi: 10.1016/j.apsusc.2014.11.148 CrossRefGoogle Scholar
  10. 10.
    Ponsonnet L, Reybier K, Jaffrezic N et al (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23:551–560. doi: 10.1016/S0928-4931(03)00033-X CrossRefGoogle Scholar
  11. 11.
    Kubiak KJ, Wilson MCT, Mathia TG, Carval P (2011) Wettability versus roughness of engineering surfaces. Wear 271:523–528. doi: 10.1016/j.wear.2010.03.029 CrossRefGoogle Scholar
  12. 12.
    Coblas DG, Fatu A, Maoui A, Hajjam M (2014) Manufacturing textured surfaces: state of art and recent developments. Proc Inst Mech Eng Part J J Eng Tribol 229:3–29. doi: 10.1177/1350650114542242 CrossRefGoogle Scholar
  13. 13.
    Etsion I (2005) State of the art in laser surface texturing. J Tribol 127:248. doi: 10.1115/1.1828070 CrossRefGoogle Scholar
  14. 14.
    Jain VK, Gehlot D (2015) Anode shape prediction in through-mask-Ecmm using FEM. Mach Sci Technol 19:286–312. doi: 10.1080/10910344.2015.1018533 CrossRefGoogle Scholar
  15. 15.
    Datta M (1995) Fabrication of an array of precision nozzles by through-mask electrochemical micromachining. J Electrochem Soc 142:3801. doi: 10.1149/1.2048416 CrossRefGoogle Scholar
  16. 16.
    Jain VK, Lal GK, Kanetkar Y (2005) Stray current attack and stagnation zones in electrochemical drilling. Int J Adv Manuf Technol 26:527–536. doi: 10.1007/s00170-004-2264-7 CrossRefGoogle Scholar
  17. 17.
    Ryk G, Etsion I (2006) Testing piston rings with partial laser surface texturing for friction reduction. Wear 261:792–796. doi: 10.1016/j.wear.2006.01.031 CrossRefGoogle Scholar
  18. 18.
    Aspinwall DK, Wise MLH, Stout KJ et al (1992) Electrical discharge texturing. Int J Mach Tools Manuf 32:183–193. doi: 10.1016/0890-6955(92)90077-T CrossRefGoogle Scholar
  19. 19.
    Curodeau A, Marceau LF, Richard M, Lessard J (2005) New EDM polishing and texturing process with conductive polymer electrodes. J Mater Process Technol 159:17–26. doi: 10.1016/j.jmatprotec.2003.11.004 CrossRefGoogle Scholar
  20. 20.
    Zhou R, Cao J, Ehmann K, Xu C (2015) An investigation on deformation-based surface texturing. J Eng Sci Eng 133:1–6. doi: 10.1115/1.4005459 Google Scholar
  21. 21.
    Kaufman HR, Robinson RS (1979) Ion beam texturing of surfaces. J Vaccum Sci Technol 175:1–5. doi: 10.1116/1.569899 Google Scholar
  22. 22.
    Guo P, Lu Y, Ehmann KF, Cao J (2014) Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting. CIRP Ann-Manuf Technol 63:553–556. doi: 10.1016/j.cirp.2014.03.048 CrossRefGoogle Scholar
  23. 23.
    Jain VK (2002) Advanced machining processes. Allied publisher, New DelhiGoogle Scholar
  24. 24.
    Zhu D, Qu NS, Li HS et al (2009) Electrochemical micromachining of microstructures of micro hole and dimple array. CIRP Ann-Manuf Technol 58:177–180. doi: 10.1016/j.cirp.2009.03.004 CrossRefGoogle Scholar
  25. 25.
    Zhang X, Qu N, Li H, Xu Z (2015) Investigation of machining accuracy of micro-dimples fabricated by modified microscale pattern transfer without photolithography of substrates. Int J Adv Manuf Technol. doi: 10.1007/s00170-015-7283-z Google Scholar
  26. 26.
    Zhang X, Qu N, Chen X (2016) Sandwich-like electrochemical micromachining of micro-dimples. Surf Coat Technol 302:438–447. doi: 10.1016/j.surfcoat.2016.05.088 CrossRefGoogle Scholar
  27. 27.
    Hao X, Wang L, Wang Q et al (2011) Surface micro-texturing of metallic cylindrical surface with proximity rolling-exposure lithography and electrochemical micromachining. Appl Surf Sci 257:8906–8911. doi: 10.1016/j.apsusc.2011.05.061 CrossRefGoogle Scholar
  28. 28.
    Qu N, Chen X, Li H, Zeng Y (2014) Electrochemical micromachining of micro-dimples arrays on cylindrical inner surfaces using a dry-film photoresist. Chinese J Aeronaut 27:1030–1036. doi: 10.1016/j.cja.2014.03.012 CrossRefGoogle Scholar
  29. 29.
    Landolt D, Chauvy PF, Zinger O (2003) Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochim Acta 48:3185–3201. doi: 10.1016/S0013-4686(03)00368-2 CrossRefGoogle Scholar
  30. 30.
    Hackert-Oschätzchen M, Meichsner G, Zinecker M et al (2012) Micro machining with continuous electrolytic free jet. Precis Eng 36:612–619. doi: 10.1016/j.precisioneng.2012.05.003 CrossRefGoogle Scholar
  31. 31.
    Chen X, Qu N, Hou Z (2016) Electrochemical micromachining of micro-dimples arrays on the surface of Ti-6Al-4V with NaNO3 electrolyte. Int J Adv Manuf Technol. doi: 10.1007/s00170-016-8807-x Google Scholar
  32. 32.
    Chen X, Qu N, Li H, Xu Z (2015) Pulsed electrochemical micromachining for generating micro-dimples arrays on a cylindrical surface with a flexible mask. Appl Surf Sci 343:141–147. doi: 10.1016/j.apsusc.2015.03.087 CrossRefGoogle Scholar
  33. 33.
    Chen X, Qu N, Li H, Zhu D (2015) The fabrication and application of a PDMS micro through-holes mask in electrochemical micromanufacturing. Adv Mech Eng 6:943092–943092. doi: 10.1155/2014/943092 CrossRefGoogle Scholar
  34. 34.
    Natsu W, Ikeda T, Kunieda M (2007) Generating complicated surface with electrolyte jet machining. Precis Eng 31:33–39. doi: 10.1016/j.precisioneng.2006.02.004 CrossRefGoogle Scholar
  35. 35.
    Natsu W, Ooshiro S, Kunieda M (2008) Research on generation of three-dimensional surface with micro-electrolyte jet machining. CIRP J Manuf Sci Technol 1:27–34. doi: 10.1016/j.cirpj.2008.06.006 CrossRefGoogle Scholar
  36. 36.
    Kunieda M, Mizugai K, Watanabe S et al (2011) Electrochemical micromachining using flat electrolyte jet. CIRP Ann-Manuf Technol 60:251–254. doi: 10.1016/j.cirp.2011.03.022 CrossRefGoogle Scholar
  37. 37.
    Lee ES, Baek SY, Cho CR (2007) A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. Int J Adv Manuf Technol 31:762–769. doi: 10.1007/s00170-005-0247-y CrossRefGoogle Scholar
  38. 38.
    Hackert M, Jahn S, Schubert A (2011) Design of electrochemical machining processes by multiphysics simulation. Proc. Eur. COMSOL Conf. StuttgartGoogle Scholar
  39. 39.
    Klocke F, Zeis M, Harst S et al (2013) Modeling and simulation of the electrochemical machining (ECM) material removal process for the manufacture of aero engine components. Procedia CIRP 8:265–270. doi: 10.1016/j.procir.2013.06.100 CrossRefGoogle Scholar
  40. 40.
    Tang M, Shim V, Pan ZY et al (2011) Laser ablation of metal substrates for super-hydrophobic effect. J Laser Micro Nanoeng 6:6–9. doi: 10.2961/jlmn.2011.01.0002 CrossRefGoogle Scholar
  41. 41.
    Vorobyev AY, Guo C (2015) Multifunctional surfaces produced by femtosecond laser pulses. J Appl Phys 33103:3–8. doi: 10.1063/1.4905616 Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Divyansh Singh Patel
    • 1
    Email author
  • V. K. Jain
    • 1
  • Ankit Shrivastava
    • 1
  • J. Ramkumar
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations